Tips

Life . . . and a trouble-free journey . . . is all about the details

L1050639.JPG

Okay, no snickering about the technicolor assemblage above. The two jerry cans are colored appropriately for their purpose—blue and water, yellow for diesel. The tangerine gas bottle is courtesy Graham Jackson, who bought it and had it filled for us in Durban while we were still en route to Africa. Not sure if that was the only color available or if he was having some fun. And the straps? Green was all they had, okay?

But that’s not the story here. The story is about the level of detail one should aim for when inspecting a vehicle before a major trip, and especially the level of detail one should aim for when inspecting a new piece of equipment or a new accessory.

Consider this double jerry can and gas bottle carrier, custom-made to fit on the Kaymar rear bumper on our Land Cruiser Troopy. It seemed more than adequate when we picked up the vehicle after its installation. The pivot rides on a heavy-duty bearing and was rock-solid. I liked the locking bars to prevent fuel or water theft. I wasn’t pleased with the sharp edges of the tie-down strap keepers, but they seemed adequate until we got the Troopy back to the states where I could modify them. Our supplier had already installed a NATO fuel can and a plastic water can in it, so we simply filled them and left on the trip, which this time was a long, long route with no fuel resupply for at least 700 miles. And we had no trouble with the carrier.

The next trip, our last in Australia, involved another long no-resupply section (have you gathered these are common in Australia?). Although we had more than enough fuel under even the most pessimistic calculations, I nevertheless filled the yellow can on the rack.

A good ways along the Anne Beadell Highway, at the Ilkurlka Roadhouse, I walked around the back of the vehicle and smelled, then saw, diesel fuel pouring in a tiny but steady stream from the bottom of the can. When I pulled out the can and looked at the bottom of its receptacle, I immediately saw why. The base of the receptacle had been assembled in such a way that it left four welds protruding above the rest of the base. One of those welds had simply ground its way through the jerry can.

L1050632 copy.jpg

It was not an issue for that trip, but it could well have been on another with more critical fuel needs. People have, indeed, died from identical issues. While we were in convoy with friends, and had satellite telephones, it still could have presented a major hassle.

When we picked up the Troopy in Durban this week, I addressed the problem temporarily but effectively with a double layer of the yoga mat material we always carry for lining cabinets and stopping random rattles. With new jerry cans in place we were on our way.

L1050634 copy.jpg

It was a good lesson.


Better brake lamps for older vehicles

LED brake lamps.jpg

It’s ironic that, as the car screeched to a halt scant feet behind my FJ40 while I sat helpless at a stoplight, my first panicked thought centered on the vehicle and not my cervical spine. 

But after all, the value of the Land Cruiser has arced somewhere northwards of $50,000 (my last offer from a walk-up stranger at the west Overland Expo). A rear-end collision would do no favors for that arc. So—for about the tenth time in several months—I determined to install better brake lamps. This time I acted on it.

The revolution of the LED has affected all areas of automotive lighting. But while most amazement centers around the astounding brilliance, power conservation, and durability of LED headlamps and driving lamps, we might better appreciate their advantage in brake lamps. Why? No, not just because they are brighter, but because an LED lamp reaches full brightness two tenths of a second faster than an incandescent bulb. That might not sound like much, but consider that a vehicle moving at 40 mph travels 12 feet in two-tenths of a second. So that slight advantage could very well mean the difference between a near miss and a car-and-cervical-spine-crunching collision.

My FJ40 wears a rear bumper/rack from Stout Equipment (now sadly defunct), and in place of the stock round lamps has oval Truck-Lite lamps, but fitted with the same dual-filament bulbs (Sylvania 2057LL) with staggered locating posts, common on millions of older vehicles. A short search led me to a kit from Aaron LED comprising a pair of LED bulbs and the requisite 50-watt resistors.

That requirement for a resistor confuses many people, as it confused me. The simple explanation is that an LED bulb retrofitted in an application such as this uses less current than the original bulb. Supplied with full current, on the turn-signal function it will flash far too quickly. The over-current condition can also reduce the lifespan of the bulb. The resistor simply converts the excess current to heat—which, the astute among you will guess, negates the energy-saving characteristic of the LED. Obviously in a brake and turn-signal lamp only on intermittently this is of scant concern. More so is the fact that the resistor can get quite hot and should be mounted to a metal surface to help dissipate this heat. (Other LED lamps are designed to use full current and do not suffer this loss of efficiency.)

The kit came with cheap Siamese clips to tap into the existing wiring. I hate those things, which expose the wiring to the elements and fail at a remarkably consistent rate. So I cut the wires and used crimped connections covered with heat-shrink tubing. (Those more purist than I might scoff that I did not solder the conections. However, I have crimped connections protected with heat-shrink tubing on this vehicle that are at least 25 year old and still working perfectly. For high-amperage installations I’ll solder, but I don’t think it’s necessary for low-wattage bulbs. And I do use a proper crimping tool, not pliers.)

Old and new.

Old and new.

The result was a satisfyingly obvious increase in the brightness of my brake lamps, not to mention the faster activation. I’m now considering adding even more security with a high-mounted LED third brake lamp from Truck-Lite. I really hate those screeching noises behind me.

Factory vs. aftermarket

Aftermarket starter on the left; Toyota starter on the right

Aftermarket starter on the left; Toyota starter on the right

If you’ve ever turned over an engine by hand you know it’s no easy thing to do. You’re working against a lot of internal friction, plus the compression as each piston rises on the firing stroke. Your starter has to do the same job, except a lot faster. So it clearly needs to be built well.

Take a look at these two starters for a Land Cruiser F or 2F engine—an aftermarket unit on the left and a factory Toyota unit on the right. If you’re not familiar with how a starter works, notice the small gear visible at the top of each unit. When you turn the ignition key to start the engine, that gear slides forward and engages the flywheel behind the engine, and spins it rapidly to enable the ignition to catch and start the engine. Once it starts and you release the key, the gear slides back out of engagement.

It should be obvious that that gear is subjected to a great deal of stress—which is why the factory starter has a nose cone that supports the end of the shaft on which the gear slides, hugely increasing its stiffness (and also possibly helping keep random dirt and debris away from the shaft and gear).

Now look at the aftermarket starter. No nose cone, no support for the gear. Cheaper to make, for sure.

Which would you expect to last longer?

Handbrakes. Don't be one.

This is a handbrake.

This is a handbrake.

Burned in my memory is the first time I read a post on a popular overlanding forum by a fellow who wanted to go on a particular trip, except, as he put it, “The handbrake won’t go if there aren’t bathrooms.”

I was confused for a fraction of a second, until I realized the guy was referring to a human being—specifically his wife.

Shocked, I looked at subsequent posts to enjoy him get flamed for such a demeaning reference. Not only did he not; he had plenty of company. Since then I’ve run across the term dozens of times.

So is this.

So is this.

I’m sure the guys who use the term would act like it was I who were offending them, and laugh it off as “just a joke” if confronted, just as my stepfather used to laugh it off as “just a joke” when he referred to people as Pollacks and Nips, and worse. Spare me. No one uses such a reference as “just a joke.” It is a dehumanizing put-down and points out its user as someone lacking even a vestige of class.

Now that I have that off my chest, I would like to address the very real issue of differing expectations and needs while on journeys, because there is no doubt that many couples have them—especially when dealing with divergent attitudes toward “roughing it.” And let’s be honest: While in some cases it is the other way around (I know of several personally), usually it is the female half of the couple who resists the inconveniences associated with “roughing it.” So what to do?

This is not.

This is not.

Easy: Just make it not rough.

One of the benefits of the explosion in interest in overlanding over the last decade is the commensurate explosion in equipment of all kinds. It has never been easier to bring along most of the comforts of home. Here’s a look by category.

Bathroom. This is the big point of resistance for most women. It’s easy for men to forget that for a woman, going “#1” is basically as involved as it is for a man going “#2.” Fortunately there are numerous ways to make the procedure both comfortable and private. You can store a pop-up enclosure in the back of the vehicle and deploy and un-deploy it in seconds if privacy is necessary or desired. Portable toilet systems now range from basic but surprisingly comfortable seats that fit over a five-gallon bucket with a liner, to porta-pottis with a water reservoir for flushing, and cassette toilets that simplify emptying later. Add something as simple as a tap on a five-gallon water can for washing, and you’ll have all the same things covered as you would at home: privacy, comfort, and cleanliness.

Shower. Closely related to the bathroom issue, since the enclosure can serve both. However, bathing and changing is much easier in a fairly large and decently windproof enclosure (i.e. not a pop-up), so there’s nothing wrong with carrying a compact pop-up for on-the-road bathroom breaks, as well as a larger enclosure for camp duty as both toilet and shower room. There are lots of excellent products on the market that will provide a hot shower, from simple but effective hanging bags heated by the sun to engine-mounted heat exchangers to propane-heated units with 12V powered pumps. Go with whatever level of luxury you feel your mate desires—or deserves.

Bedroom. If you have a camper or trailer this is pretty easy. If not, consider either a roof tent with a dressing room attachment, or a ground tent with standing headroom (e.g., a Turbo Tent or a Springbar, two of my favorites). Equip the ground tent with generously-sized cots, thick Therm-a-Rest camp mattresses, a flannel-lined sleeping bags, and a real pillow, and there’s a good chance your significant other will wake up the next morning and say, “That was more comfortable than our bed at home.”

Kitchen. You might be fine with spooning SpaghettiOs out of a can heated in the fire when you’re out on your own. Or you may have the full-on Snow Peak Iron Grill kit. In either case, when your mate is along you need to orient the kitchen and food to her (or his) taste. Does she do the cooking at home? If so, would she like to in the outdoors as well given a sufficiently well-equipped kitchen? Then make it so. If she cooks at home but has no desire to do so on the road, then do your finest to provide her with excellent meals. With the superb 12V fridges available now, there is no excuse not to bring fresh produce and meats and have menus fully the equivalent of those at home. And if getting her out means skipping camp food for restaurants now and then, do it. Along those lines . . .

Hotels. I’ve talked with a surprising number of both men and women who enjoy camping—just not for weeks at a time. If your situation is similar, then work out trips and itineraries so that camp days can alternate with hotel or lodge days on whatever schedule works best. Do this for a while and you might find you both start being happy with more days camping and fewer under roofs.

Overlanding does not have to be an all-or-nothing proposition, unless your loved one simply does not like camping at all, period. Even in that case it’s possible to compromise. Enjoy civilized trips together, then every once in a while you can take off on your own, skip showers for a week, pee on trees, and eat SpaghettiOs.

Just don’t be the handbrake on your relationship.

Quality . . .

AT2.jpg

It’s no secret that I’m a believer in high-quality gear, whether it’s the vehicle, accessories, tools, camping equipment, or personal accoutrements. I also try to buy American-made products when possible (and when they meet my standards, which is not always the case). 


But for certain products there simply is no longer a U.S.-made (or even North American-made) choice.


Recently I was in the market for a new Gore-Tex parka, and turned to Arc’Teryx, a company I can modestly claim to have helped publicize in their early days, when I reviewed gear for Outside magazine. I was impressed with the quality of Arc-Teryx’s products—even among a suite of superb contemporaries such as Marmot—and at the time they were making their clothing in Canada.


Sadly, that no longer seems to be the case. The Beta AR jacket I bought was made in, of all places, Myanmar (Burma to many of us). 

AT3.jpg


But my initital disappointment more or less evaporated when I examined the jacket closely. Try as I might, I could find not a single flaw in its construction—indeed, the closer I looked the more impeccable were the details and stitching. In the end I had to admit it was fully the equal of any of the company’s early efforts.


That doesn’t mean I’m happy that the manufacturing of so many thousands of products has shifted overseas to save labor costs here—and, make no mistake, that is the sole reason to do so—but it did serve as a reminder to me that quality is not intrinsic to any geographic locale. So perhaps it’s now more important than ever for consumers to actually pay attention to what they buy, and evaluate it on its merits rather than any arbitrary prejudice. 

AT1.jpg

The only three knots you need for paracord lashing

Paracord.jpg

In my opinion nothing beats a ratchet strap for securing cargo. Cheaper cinch straps—even the superior style with the roller buckle—just can’t be cinched tight enough to reliably secure heavier and potentially dangerous items. 

But it’s not always possible to use ratchet straps. Often you’ll simply run out of your supply, or the hooks won’t fit where you need to secure a load. Sometimes with a bulky roof-rack load you might need to run your lashing back and forth a dozen times to prevent flapping.

Time for the paracord.

Parachute cord has come a long way since its original application. Now you can find it everywhere from those ubiquitous “survival” bracelets and wrapped “tactical” knife handles to—ready?—the Hubble Space Telescope, where astronauts from the space shuttle Discovery used 35 feet of it to resecure loose thermal blankets protecting the instrument. 

That ubiquity has spawned a lot of substandard variations of the authentic product. Genuine mil-spec nylon paracord will advertise its conformity to military standard C-540H Type III (“550” paracord, indicating its rated breaking strength in pounds), or C-540H Type IV (“750” paracord, again indicating breaking strength). If you pull apart the end of a length of paracord you can confirm authenticity by counting the individual cords within the kernmantle sheath. Genuine mil-spec paracord will have between seven and 11 of them, and each cord will comprise three twisted strands (cheaper paracord might have fewer cords made from only two strands). On genuine mil-spec paracord one of the inner cords will be a contrasting color; this is a marker for the manufacturer.

Paracord 2.jpg

Even genuine mil-spec paracord is inexpensive enough that keeping a couple hundred feet in the vehicle for odd jobs is affordable. Of course, you can opt for larger and more expensive kernantle cordage, even Kevlar if you want the ultimate in strength. But 550 or 750 paracord is pretty stout, as long as you keep in mind that a knot—any knot, to a greater or lesser degree—will reduce its strength by up to 25 percent. 

Once you’ve determined the need for a fabbed up lashing and have cut the length you need, don’t neglect to fuse the end, otherwise the interior cords can protrude and snarl and your work will look decidedly less than pro. I work the kernmantle sheath over the end, so when I apply a flame it (usually) melts nicely and encapsulates the cords. Just make sure you have a solid, tight blob. I find that putting the flame next to but not right on the end helps melt the cord neatly.

Now you need to secure that cargo securely. Paracord has two characteristics that can work with and against you. It’s a bit stretchy, which makes it easier to tell when you’ve pulled it tight enough but can let the load shift if you haven’t. And it’s fairly slippery, which makes it easier to pull tight across duffels and other luggage, but which also means knots can come loose if not chosen correctly and tied properly.

To ensure that, you need know only three: a bowline, a trucker’s hitch, and a sheetbend.

The bowline is the best way to make a secure loop, to tie the first end of your paracord to the roof rack or cargo eyelet. (I’ve blatantly lifted the still images here from the excellent site netknots.com, because I urge you to go there and watch the easy-to-follow animations of these knots, and dozens more.) The bowline is strong, it weakens the rope less than some other knots, yet it is easy to undo.

Screen Shot 2018-12-12 at 5.37.55 PM.png

At the other end, you want to pull that cord as tight as possible and secure it so it won’t loosen. The trucker’s hitch actually functions as a jive pulley to multiply the force you’re pulling with, and when tied off properly will not slip.

Screen Shot 2018-12-12 at 5.40.25 PM.png

When using paracord I suggest augmenting the netknots instructions. In part three, they finish off the knot with a single loop (basically a half hitch). However, paracord can slip if secured thusly. I strongly suggest looping the end of the cord through twice, then looping it the opposite direction below, so you in effect add a tautline hitch, like this:

Screen Shot 2018-12-12 at 5.42.42 PM.png

Do this finishing knot right up against the “pulley” loop. Just as with the bowline, the trucker’s hitch unties easily, and in fact the slippery half hitch you tied to use as the “pulley” will pop loose simply by pulling on either end of the cord.

The last knot you’ll use if you need to join two cords that are each too short: the sheet bend. It’s an incredibly simple knot, almost a square knot except the free end of the second (blue here) cord tucks under as shown.

Screen Shot 2018-12-12 at 5.45.59 PM.png

For extra security you can double the knot as in the diagram. The brilliant thing about the sheet bend is that it will effectively join two cords or ropes of different diameter. Just remember to use the smaller line for the second (blue) part of the knot.

And the brilliant thing about all these knots is that they’re useful in hundreds of other situations. So cut yourself a three-foot piece of mil-spec paracord and practice them until they’re second nature. They’ll serve you well.

The versatile 1/4-inch ratchet . . .

Tools3 copy.jpg

The ratchet and socket set is the most critical component of your tool kit. It’s what comes out when things need attention that are held on to the vehicle with actual nuts and bolts, rather than just trim screws or plastic press fittings. Important things, in other words. I’ve always maintained it’s the part of your kit you should spend the most money on, to get the absolute highest quality. Of all the tools I’ve broken over the years, the majority by far have been cheap sockets that split, or cheap ratchets that jammed or broke altogether.

Most owners—me included—start out with a 3/8ths-inch ratchet and socket set (the 3/8ths refers to the diameter of the anvil, the square peg on the ratchet to which you attach the sockets). A 3/8ths set will comfortably handle bolts or nuts from about 9mm or 5/16ths inch up to 19mm or 3/4 inch. That’s suited for a lot of medium-sized repairs—replacing fan or serpentine belts, water pumps, radiators, etc. Above that you really should step up to a 1/2-inch ratchet, which is able to handle larger sockets for fittings such as those on suspension components, which need more torque to remove or fasten securely.

Thus for a long time my automotive tool kit has included a 3/8ths-inch ratchet and socket set for general work and a 1/2-inch set for major repairs. And that worked just fine. But lately I’ve been rethinking. Why? Several reasons.

Even a 3/8ths ratchet can be a bit long and bulky when working in tight spaces on fasteners smaller than 11 or 12mm. Yes, you can add a short-handled ratchet to the kit, but the head will still be just as bulky. And your 3/8ths socket set will probably have a lot of overlap with your 1/2-inch set. Typically the former will include sockets up to about 19mm, and the latter will include sockets down to 12mm. I’d rather use a 1/2-inch ratchet for that 19mm nut, yet a 1/2-inch ratchet is silly overkill for any 12mm bolt or nut I’ve ever encountered.

Enter the 1/4-inch ratchet. It’s smaller all around, able to fit into spaces no 3/8ths equivalent could. You can argue that the ratcheting mechanism is inevitably weaker as well, but consider two things: First, there is only so much torque necessary for even a 12 or 13mm fastener; second, a high-quality ratchet will withstand force comfortably in excess of any you’re likely to need. I’ve yet to meet a 12mm or even 13mm nut that I couldn’t remove with a 1/4-inch ratchet. And it will be far handier for smaller sizes.

Additionally, a 1/4-inch ratchet and socket set will cost less than a larger one, so you can go for higher quality. Finally, the 1/4-inch set will be lighter and take up less space, a surprisingly real consideration even in something such as our Troop Carrier, the tool bin of which is approaching maximum capacity and the GVWR of which is approaching, period.

So I’ve been wondering if a versatile combination might be a 1/4-inch set with sockets ranging from very small, say 4 or 5mm, up to about 13mm, and a 1/2-inch set with sockets from 12 or 13mm up to whatever you like—my current set goes up to 32mm. The slight overlap would mean that if you ever did run into a recalcitrant 12 or 13mm bolt while using the 1/4-inch kit, you could switch up to the 1/2-inch.

I have a nice mixed set of 1/4-inch stuff, but this scheme was a perfect opportunity to spend money on tools. I like investigating brands new to me, and my friend, driving trainer extraordinaire Graham Jackson, is fond of the German brand Proxxon, so I looked them up on Amazon, and ordered the 23280 49-piece “Precision Engineer’s” 1/4-inch drive set.

The first thing that impresssed me was the box it came in. While plastic rather than metal, it had decent sliding latches rather than the usual flimsy snap latches with stressed-plastic hinges, which invariably fail. A nice touch.

Inside I first examined the ratchet itself. The mechanism was a fine 72-tooth unit. Check. Push-button release, check. Lever-operated reversing switch, check. Perfect. The offset head is supposed to ease access to tight spaces. Not sure about that one.

The selection of sockets was very good. Standard sockets from 4mm to 13mm—perfect. They’re forged from chrome vanadium with a double-nickel and single chrome layer finish for corrosion resistance. They of course employ a copy of Snap-on’s Flank Drive system to help grip rounded off nuts (and to avoid rounding them off). A bonus was a comprehensive selection of bits for either the ratchet or the included driver: Screwdriver bits, hex bits, and Torx bits. Five sockets for external Torx fittings. There was even a little selection of angled allen keys, 1.25 to 3mm. The set included two ratchet extensions—one of which included a (removable) sliding T-bar fitting—and a universal joint.

The only flaw I found was the paucity of deep sockets—just four of them, in 6, 7, 8, and 10mm. Odd. Why not a full complement up to 13mm? I would have traded the external Torx sockets for them. As it was there was no space in the tray for additional sockets. But . . . what’s this? There appeared to be some voids in the box under the molded tray. Indeed, when I lifted it out there were several generous gaps.

I called the U.S. Proxxon headquarters. They told me they don’t directly import the hand tools sets, only power tools (I bought mine through a third party dealer). However, when I told them what I was trying to do they generously offered to special-order the sockets I wanted. So I filled in the deep sockets and bought a flexible drive extension as well. All those plus a Snap-on flex-head 1/4-inch ratchet fit underneath the tray.

I guess I need to clean up those holes.

I guess I need to clean up those holes.

Now I had a comprehensive 1/4-inch socket and ratchet set with the bonus of the driver bits and handle. As expected, it was significantly more compact than an equivalent in 3/8ths. The last task was to make it easier to get the molded tray out when I wanted the stuff in the bottom. So I Dremelled two slots in the tray, and ran a piece of flat 1/2-inch webbing through them and under the tray, leaving the ends loose on top. It’s now easy to pull the tray free.

Our Troop Carrier has a comprehensive set of tools, but they live in a cabinet under a bench that is somewhat of a pain to get to. I’ve been wanting to have a more convenient tool kit for small repairs and adjustments. This Proxxon set, with its combination of sockets and bits, should fill that role perfectly—and it’s compact enough to fit behind a seat.

Hmm . . . I wonder if I should order another two or three sets?

Epilogue: Regarding my idea that a 1/4-inch socket set combined with a 1/2-inch set might be all one needs for just about any job: Proxxon sells a kit (23286) that combines just that, with sockets from 4mm all the way to 34mm. Impressive. Just add some deep sockets and a breaker bar.

71QPNSlQiQL._SL1000_.jpg

For want of an M8 x 30mm bolt . . .

P1000720 copy.jpg

It still amazes me how well I can prepare for a long, remote journey, yet still find myself unprepared.

Over the course of four trips to Australia in the Land Cruiser Troopy we bought there, I slowly accumulated a pretty decent selection of tools, highlighted by a superb Bahco S106 combination kit (see here), which includes full 1/4 and 1/2-inch socket sets, wrenches, plus numerous drive fittings. An additional set of 1/2-inch deep sockets, a screwdriver selection, an electrical tester, and various pliers rounds out the kit. 

Our recent trip was without doubt the hardest on both our Troopy and that belonging to Graham Jackson and Connie Rodman, as we covered 2,600 kilometers of dirt tracks between Coober Pedy to Perth, some of them heavily corrugated. And as on earlier trips, substandard work done by a mechanic in Sydney (not the Expedition Centre which did all the camper conversions, but a repair shop nearby) began to manifest itself. A new radiator installed on Graham’s vehicle, bought long distance before we arrived—and guaranteed by the mechanic to be “as good as Toyota”—began leaking halfway through the journey. Radiator stop-leak controlled but did not completely plug it. Next, I found the transfer case lever in our vehicle would engage four wheel drive but flopped back and forth rather than engage low range. The nut on that section of linkage had fallen off. (The transmission had been removed to repair a leak before a previous trip.)

A bit farther on, Roseann and I started noticing a rattle that seemed to be coming from the exhaust, as if some gravel had become caught on top of a heat shield. But soon we could hear an obvious exhaust leak. Underneath the vehicle I inspected the “performance” exhaust system the mechanic had installed. A joint near the middle was completely loose. It had been connected with two bolts and nuts—no flat washers, no lock washers, no jam or nylock nut, no Loctite. One bolt and nut was completely gone; the other I easily removed with my fingers, to find most of the thread stripped.

IMG_8178.JPG

And that was a problem, because while I had plenty of tools with which to install or remove virtually any nut or bolt on the truck, I had not gotten around to the item on my pre-trip list that read BUY SPARE BOLTS AND NUTS.

Sigh . . .

This time I got lucky. We had some leftover washers from a RAM mount, plus several bolts I had bought to secure it, and against all odds they just happened to be a suitable size and length. We were soon back on the road with a quiet exhaust (and Graham had found an extra M8 nut with which to fix the low-range linkage). 

Needless to say, when we got to Perth I made my first task a trip to the local Bunnings to get a start on rectifying the situation before we loaded the Land Cruisers into a container for Africa.

One suggestion: I usually buy mostly high-tensile spare bolts (Grade 8 in SAE or 8.8 or 10.9 in metric), figuring that it won't hurt to replace a missing standard bolt with a high-tensile spare, and I can be assured of having the proper strength fastener for a critical component.

P1000722 copy.jpg