Cosmetics versus function . . . and safety

Screen Shot 2018-06-10 at 11.46.14 AM.png

This morning I was scanning the excellent Silodrome site, and found this BJ40 restored by Legacy Overland, one of the ever-growing crop of companies exploiting the skyrocketing values of classic 4x4s such as the Land Cruiser and Series Land Rovers.

Legacy is headquartered in Greenwich, Connecticut. They don't specify where their restorations are done, but from various photos it appears to me to be in some Latin American country, which would make sense given that competitors such as The FJ Company do theirs there, taking advantage of cheap and plentiful labor. However, I have no hard evidence of this, and in any case it's not the location of the workshop that matters, but the quality.

To that: This BJ40 is done up in fine style, with a matt black finish, nicely stitched leather upholstery (emblazoned with the company's crest), lots of shiny new bits, and a beautiful engine compartment showing off the four-cylinder diesel powerplant. It also boasts a few actual trail modifications, such as the Hi-Lift jack, BFG Mud-Terrains, and what appears to be Old Man Emu suspension.

However. Closer inspection reveals a couple of disturbing details. 

The front bumper is equipped with shackle mounts and D-rings for recovery. Generally speaking, D-rings are considered inferior to bow shackles for recovery, as the former are only suitable for straight-line pulls. More importantly here, blowing up one photo revealed the D-ring to be stamped with a working load limit (WLL) of one ton, or 2,000 pounds. This is drastically underspecced for a vehicle weighing close to twice that.

Undersized recovery points are alarming, as some poor rookie buyer might quite logically assume they are adequate for their intended (or implied) task. But take a close look at the suspension, and you'll note that all four anti-inversion shackles are installed backwards and upside down. That's more than alarming, as it calls into question every aspect of the assembly of this truck. If something as simple—and visible—as shackles are installed backwards, what horrors might be hidden in the engine or transmission? Roseann and I have been on the receiving end of such horrors, and fixing them when the company at fault has washed its hands of the situation and tacitly invited you to sue them can get very expensive.

Screen Shot 2018-06-10 at 12.00.51 PM.png

Of course the drivetrain of this Land Cruiser might very well be impeccably assembled, and the shackles and recovery points isolated issues. Then again, looking at another of the underside photos I'm wondering what the visible yellow nylon strap is holding up . . .

It's easy to put a cosmetic gloss on a classic vehicle and sell it for a lot of money (this one went for $87,360). But engineering a reliable and safe restoration takes much more skill. If you are contemplating a professionally refurbished classic 4x4 vehicle, do your homework on the company, and perform a very, very close inspection.

Update: On the advice of a commenter, I sent the company an email notifying them of the problems with this vehicle, and suggesting strongly that they contact the new owner and have them rectified.

I heard nothing back.

Side slopes . . .

Screen Shot 2018-04-28 at 6.10.51 AM.png

I've always loved this image of a Series I Land Rover tilted at 45 degrees, with an advisory for drivers that the "safe operating angle" is 30 degrees. When was the last time you saw a consumer vehicle advertise its side slope capability, complete with a photo to prove it?

Negotiating a significant side slope is without doubt the most nerve-wracking maneuver you can do with a four-wheel-drive vehicle—at least it is for me. I remember not too long after I got my FJ40 sticking one of those liquid-filled angle gauges on the dash (Roseann annoyingly referred to it as the "tilt-o-meter"). I took the 40 out on a local trail and put it on what felt like a pretty steep side slope in a rutted section of the track, then looked at the gauge . . . which read 15 degrees. It was humiliating. I drove farther up the slope until I got to 20 degrees, which seemed seriously tipped. At 25 degrees I surrendered, even though I knew intellectually that was well below the danger point for an FJ40. I turned the engine off, left it in gear with the parking brake on, and got out to see what it looked like from someone else's viewpoint.

Oh. Jeez. Seriously? Drawing an imaginary line from the outside tire straight up it was clear there was all kinds of weight left on the safe side of the line. Back inside it stilled looked scary, but significantly less so. 

Side slopes always look steeper from inside the vehicle. Photo courtesy Matt Scott 

Side slopes always look steeper from inside the vehicle. Photo courtesy Matt Scott 

I've since had the FJ40 tipped somewhat beyond 25 degrees (the "tilt-o-meter," however, is long gone, replaced by an iPhone app when needed . . .), and had a Jeep Wrangler Rubicon to significantly beyond that. But those kinds of angles remain wince-inducing for me.

And that's a good thing, because side slopes in the real world aren't like tipping a vehicle up on a table in a garage for a photo. When you are moving across an incline of dirt or mixed substrate or rocks, that safe-but-thrilling 20 or 25-degree angle can transition to a very-possibly-unsafe 30 or 35 degrees or worse in an instant if a downhill tire hits a divot or an uphill tire hits a rock. The movement of the vehicle then adds momentum to that tilt, exacerbating the situation. Also, if traversing a steep and loose slope and the vehicle starts to slide sideways and then catches grip again suddenly, or the downhill tires dig in, it's as if someone on the high side of the vehicle gave it a really good shove. 

Negotiating a loose, sandy side slope in Peru above the Pacific. Even a relatively lightweight camper raises the center of gravity significantly.

Negotiating a loose, sandy side slope in Peru above the Pacific. Even a relatively lightweight camper raises the center of gravity significantly.

In the syllabus for the N.P.T.C. (National Proficiency Test Council) certificate in four-wheel-drive proficiency, the guidelines for negotiating side slopes don't mince words: "Avoid if possible" is number one. But what other precautions should you take?

First make sure there is a recognizable track across the slope, to prove others have crossed it successfully. A well-used track also helps ensure there are no surprises in the substrate.

Follow the golden rule of handling any challenging situation in a four-wheel-drive vehicle: "As fast as necessary; as slow as possible."

Watch the placement of your tires to avoid low spots on the low side and high spots on the high side—especially rocks in the latter case, which due to suspension bounce can bump the vehicle farther over than the actual height of the rock.

Prep the vehicle in advance to keep the center of gravity as low as possible, especially if you're carrying gear on a roof rack. If I were forced to traverse a slope I felt was on the edge of safety, I wouldn't hesitate to add some air to the downhill tires and take some out of the uphill pair.

If you're on a side slope and the vehicle begins to slide sideways out of control, or heaven forbid, tip, the escape clause is to immediately turn downhill. Whatever danger you might face driving straight down that slope is nothing compared to barrel-rolling down it.

Just before you do that, though, check the tilt-o-meter so you'll know when to back off next time.

The 2019 Ram 1500


You know the world of pickup trucks has changed when the central multi-function touchscreen in your test Ram 1500 is as big as the computer on which you are writing the review of it.


Well, almost—my Macbook Pro’s display measures 13.9 inches—but trust me, the Ram’s optional 12-inch UConnect touchscreen looks massive embedded in the middle of the dash. And I’ll say right off, that screen propels the factory navigation system into a new universe of legibility (It also makes the five-incher on the base Ram look like someone glued a flip-phone to the dash).

Ram (or Dodge if you’re stubborn) trucks have come a long way since 1992, when the company showed a group of potential buyers prototypes of a truck styled like no consumer truck before it. It sported a front end that called to mind an 18-wheeler, with a tall bulging hood and dropped fenders incorporating the headlamps.  According to legend, the reaction was starkly love/hate, and not reassuring: 86 percent of the viewers hated it, 14 percent loved it. The whole idea was about to be scrapped when someone in the marketing department pointed out that Dodge’s share of the American truck market at the time stood at about seven percent. The design was approved, and sales of Dodge trucks quadrupled in three years.

Two decades on, Ram trucks still trail Ford and Chevy but now claim a comfortable 22 percent share of the full-size market (compared with Ford at 44 percent and, for example, Toyota at an undistinguished five with the Tundra). 

Still, third is two places behind first, and Ram executives would love to climb another 10 or 20 percent up that sales chart. The 2019 Ram 1500 launch in Scottsdale was the first salvo in what will be a rolling release of optional engines, followed at some point by the heavier-duty 2500 and 3500 models. The new truck has been comprehensively revised from the wheels up, and cold, hard sales figures will soon tell how well the redesign fares with the public. Our question here is, how might it fare with overland travelers?

The demographics of pickup buyers have shifted massively in the last few decades. It used to be you bought a pickup if you had stuff to carry—a lot of stuff, like construction materials, or, if you were an outdoorsman (and, yes, the operative syllable was overwhelmingly “man” back then), a camper. Or you had a trailer to tow. A pickup was a working vehicle. Air conditioning and cloth upholstery were luxury options. To unlock the passenger door you scooted across the seat and pulled up on the button.

Not any more. Ford now sells two and a half thousand F-series pickups every day, and while their ads still stress the manly aspects of pickup ownership, most of them never carry a load larger than a pallet of Costo toilet paper. The pickup is now a lifestyle choice much more often than it is a practical necessity, and increasingly the competition among truck makers is as much about making a pickup not feel like a pickup as it is about making it function like one.

I know what you’re thinking: Isn’t overlanding a lifestyle choice? Absolutely true; however, in our defense we do actually need the functional aspects of a truck—load-carrying ability, reliability, durability, off-pavement capability—as much as we secretly hanker after the non-truck-like aspects prioritized by the guy down the street who wouldn’t know a GVWR from a GMC. 

I can loftily claim to be conversant in both aspects of pickup ownership: We use a Ford F350 to tow the 10,000-pound Overland Expo equipment trailer to the shows in Flagstaff and Asheville, while our Tacoma permanently carries a Four Wheel Camper. But I remain much less impressed by car-like interior features than by high-quality engineering. So let’s start with that—specifically, the chassis of the new Ram.

Chassis illustration.jpg

Naturally, it remains a fully boxed structure. (Toyota is the only manufacturer moving backwards in this regard, with its “Triple-Tech” design that leaves the rear third open-channel, to the detriment of chassis rigidity.) Additionally, the Ram frame now comprises fully 98 percent high-strength steel (not sure why two percent remains “normal” steel?). Crossmembers extend through the side members and are welded on both sides. The result is increased rigidity compared to the previous Ram, yet a full 100 pound savings in weight (FCA claims a total 225-pound weight savings for the new model). That stiff frame contributes to—depending on the specific option package—a maximum 2,300-pound payload and a maximum towing capacity of 12,750 pounds. (By way of comparison our 2004 F350—a one-ton truck, mind you—is rated to tow 12,000 pounds.) Wheelbases range from 140.5 to 153.5 inches.

The frame rails in front of the engine splay curiously outward at about a 15-degree angle, a feature Ram says helps with crash protection, and is patent-pending. Below those rails is another feature standard on all new Ram pickups: a composite air dam that lowers automatically at speeds over 35 mph to reduce drag. Lest you think that such insignificant details could hardly make a difference, note that the dam combined with the body design results in a drag coefficient for the new truck of just .357, the lowest of any full-size truck. By comparison, the drag coefficient of my 1982 Porsche 911SC is .40 (although it of course has a fraction of the frontal area, which must also be figured in to arrive at the total drag on the vehicle—but still . . .). 

More chassis tidbits: A pair of discs that resemble weights for a barbell, on either side of the frame under the passenger compartment, are actually “active tuned mass modules” that reduce vibration, especially when cylinder deactivation kicks in on the V8. The transmission and front suspension crossmembers are aluminum. Steel bars behind each front wheel deflect them outward in the event of a frontal offside collision.

Below the chassis sits a suspension comprising either progressive-rate all-coil springs or an optional all-air system, a first in the pickup market. The air suspension combines automatic load-leveling with manual control—Ram engineers demonstrated one advantage of the latter by hooking up a trailer: The driver reversed using the backup camera, lowered the hitch by deflating the rear air bags, and once the ball was under the tongue simply raised them again, coupling the trailer and lifting the tongue jack off the ground—no cranking necessary. The height of the vehicle can also be adjusted for easier passenger entry or greater ground clearance. The springs combine with new “Frequency Response Damping” (FRD) shocks incorporating internal bypass valves to improve ride and made by, I believe, Hitachi. Go figure.

The five-link suspension on the rear axle has been updated for more travel. The front combines aluminum lower control arms with upper arms comprising steel and—ready?—structural composite. That’s right: plastic. The composite wraps the steel so it looks like there’s nothing but plastic in the piece, a slightly unsettling illusion.

Upper control arm.jpg

Outboard of the front control arms are brake discs a massive 14.9 inches in diameter, the largest in the class. The parking brake on the rear discs is now electric—another bit of weight saving.

Are you getting my picture? Just as with the redesigned Wrangler I reviewed here, a substantial part of the Ram’s redesign took place in spots invisible under anything but an on-the-rack inspection—or on the exposed chassis FCA had displayed for us at the launch. It was impressive.

Less impressive, from a what’s-new standpoint, was the drivetrain—at least the engine, which, for this session was limited to the existing 5.7-liter hemi V8. The 5.7-liter eTorque and 3.6-liter V6 eTorque “mild hybrid” engines will be introduced later, although they were there on stands for us to admire.

Soon-to-come 5.7-liter eTorque engine. The eTorque module is the Ram-branded device at top front.

Soon-to-come 5.7-liter eTorque engine. The eTorque module is the Ram-branded device at top front.

If you’ll allow me an aside on that heavily hyped “Hemi” engine: hemi is short for hemispherical, which refers to the shape of the combustion chamber in a hemi, almost literally a dome shape. The hemi head allows for very large valves, which are placed across from each other, with the spark plug in between. So it’s a good way to develop a lot of power (thus the mythology)—the catch being it’s a good way to develop a lot of power from a two-valve-per-cylinder engine. You can’t put four valves in a hemispherical combustion chamber—the angles would be impossible to manage. For a four-valve engine you need a pent-roof combustion chamber. And four valves are better than two at developing power. Thus, evaluated objectively, the hemi produces decent power while avoiding the complexity of a four-valve head.

Where was I? Right: The standard 5.7 (395 hp, 410 lb.ft.) is a fine engine, and moves the Ram along briskly with the upgraded eight-speed 8HP75 TorqueFlite transmission. Shifting on all these new multi-speed transmissions I’ve tried recently is so seamless they are difficult to critique. Downshifting for passing seemed to lag just a bit, otherwise the drive was faultless. If any cylinder deactivation occurred during my drive I didn’t notice it (it only engages in third gear or higher). I was impressed enough with my short experience in the Wrangler with its 2.0-liter, four-cylinder eTorque engine that I look forward to trying the larger versions. In the Wrangler the eTorque seemed to add noticeable torque right off the line, before the internal-combustion partner climbed into its own torque curve. The fuel economy of these engines might determine their reception in the market.

Okay, so let’s plop the body of this truck on that impressive chassis (let me tell you, it was really hard driving the truck without it). The first thing I noticed is that the 18-wheeler look has been smoothed over so much it’s simply not a feature any more. There’s still a prominent power bulge to the hood, but the headlamps are now even with the top of the grille rather than the bottom. I bet the stylists figured Ram has enough market presence now to stand on its own, so they went for a smoother, more aerodynamic front end. It’s attractive, but not as Smokey-and-the-Bandit butch as the original—you decide whether that’s good or bad. It seemed more grown-up to me, and I liked it.


The high-end option packages such as theLimited and Laramie Longhorn incorporate sleek LED headlamps that swivel with the wheels. Substantial recovery hooks peek out from nacelles in the bumper, whether chrome on the Laramie or matte on, for example, the trail-oriented Rebel. 

My first interior experience happens to be with the Limited. I open the door, climb in, shut the door. I check the rear-view mirror: Yep, there’s a cargo bed back there. But I’m fully ensconced in the not-like-a-pickup end of the new Ram’s design. Want some details on how not-like-a-pickup it is? Consider these features:

  • Leather—lots of it. Ram assures me there is substantially more than I could find in a Chevy or Ford.
  • Seating. The seats recline. So what, you say? I’m referring to the rear seats. The front seats adjust a bunch of different ways, and they’re very comfortable, although, as with most seats these days, built for people significantly wider than I.
The Laramie Longhorn has slightly tacky alligator-pattern leather bits, but genuine wood trim.

The Laramie Longhorn has slightly tacky alligator-pattern leather bits, but genuine wood trim.


  • Quietness. How about active noice cancellation? Acoustic glass? Ram claims a 66.6 db cruise. I think our old F350 is louder than that parked. With the engine off.
  • That giant uConnect touchscreen is surprisingly practical. First, there are redundant manual controls alongside it for the climate control and sound system. Three cheers, because no multifunction touchscreen will ever match the speed of reaching down and turning a dial. With that said, the rest of the touchscreen’s functions are easy to access; you can even split the screen into still-quite-readable halves. And in navigation mode it is simply brilliant. (The bird’s eye perspective is cool too.)
  • Did I mention sound system? This one is a Harmon Kardon, with 19 speakers and a 10-inch subwoofer. The only downside is, it’s not removable so you could use it in the living room too.
  • Driver-assist features: Adaptive cruise control, blind-spot monitoring, rear cross-path detection, brake assist, surround-view cameras. 
  • Parallel and perpendicular park assist. You work the gearshift, throttle, and brake while the truck turns the steering wheel to maneuver you into a parallel spot (on either side of the truck), or to back you into a perpendicular space. My question is: Would this count for a 16-year-old trying to pass a driver’s license test?
  • There’s more, especially a bewildering array of interface possibilities, with Android Auto and Apple CarPlay, fourth-generation Sirius XM Guardian Connected Services, which can provide a 4G wi-fi hotspot, all controlled through the uConnect touchscreen. The truck sports a raft of USB ports, and an optional wireless charging station (which is labelled “Ramcharger”).
  • On a more practical note for long-distance travel, the new Ram 1500 has a two-level glove box . . . and the most spectacular center console I’ve ever seen on a factory truck. It’s massive—Ram says it’s twice the size of anything from competitors and I believe them—and boasts so many sliding trays and bins you could lose a chihuahua in there. An iPad fits in a special pocket, there’s 110VAC power available—400 watts worth—cupholders, coin holders, and a “feature” that I have to say was the silliest on the entire truck: On the bottom of one hinged lid is an engraved contractor’s conversion chart with a ruler and compass. I strongly suspect every contractor in the country has this on his or her iPhone and does not need to look at the bottom of the center console for the info. It took five minutes for my eyes to roll back down.
Brilliant and massive center console, but . . .

Brilliant and massive center console, but . . .

Hmm . . .

Hmm . . .

On our paved drive the Limited exhibited genuine carved-from-marble solidity and a taut ride at least as good as that of the Nissan Titan XD I reviewed some time ago, which at the time I thought exemplary. And by golly the thing is quiet. It handled the short stretch of dirt road to our press lunch spot with barely any increased noise.

After lunch we took turns on an off-pavement loop course in several examples of the Rebel, the trim level I suspect many overlanders will gravitate to. In addition to LT275/70R-18 Goodyear Wrangler tires and Bilstein shocks (with external reservoirs on the rear), the Rebel gets an electronic locking rear diff, hill-descent control, a one-inch suspension lift (if you don’t get the air springs), and several skid plates. You also get an interior that is any color you like as long as it is red and black, with Goodyear Wrangler tread pattern embossed on the seat upholstery. You also cannot get the 12-inch touchscreen with the Rebel (yet, at least), although the smaller eight-incher is just fine unless you’ve been pre-prejudiced by the bigger one.

Interestingly, I was told that an “off-road” package incorporating most of the Rebel options will be available on other trim levels. If this is so, you could conceivably equip your leather-clad, 12-inch-screen Limited or Laramie Longhorn with the good stuff. 

The driving course we were set loose on in the Rebel was clearly meant to be driven quickly, a suggestion many in the press pool took to heart, especially since there were several videographers along the way to film our prowess. I thought the format might have been a mistake, since the Rebel is obviously not intended or equipped to compete with Ford’s Raptor in the wannabe desert racer category. Indeed, the example I got, previously flogged by who knows how many hot-footed journos, displayed a worrying banging noise in the left front suspension area when pushed, so I took it easy. I later rode in the same truck and the new driver noticed it as well. (From a quarter view behind, I watched one truck on the course approach a “Slow Down!” sign warning of a sharp, angled pair of ditches where water had flowed into the main wash course. The driver didn’t lift off a bit, and the front suspension slammed to its bump stops and tossed the truck in the air. This is why manufacturers don’t think highly of most automotive journalists.) With that said, the Rebel would clearly be right at home exploring back roads at sane speeds, and capable with the locker and hill-descent control of going anywhere most overland travelers are likely to. 

So . . . to that point, several things come to mind. First is wondering whether the optional air suspension has the capacity to compensate for the weight of, say a Four Wheel Camper, while retaining a decent ride when the camper is off. I asked of FCA, but the we-can’t-authorize-that liability/warranty clause kicked in immediately, which I more or less expected. The top-level 2,300-pound payload is technically up to the task of camper transport, but technical capacity does not always translate to practical (safe) capacity. Still, it would be worth the experiment, except if it didn’t work you’d have spent the extra money for nothing. Having to change out the air springs for coils to accept a camper would be at best expensive and at worst impossible. The air system is certainly adequate to handle lesser camping loads, or a rack carrying a rooftop tent, for example, while maintaining proper ride height and safe handling.

For general overland travel, the new Ram—in any of its guises but especially the Limited and Laramie versions—represents a new high water mark in the evolution of comfort in a pickup truck. After all, even for the most adventurous of us, 90 percent of our travel—even while actually on a journey—is usually on pavement. I’d think little of tackling an 800-mile freeway day in the new Ram to get somewhere interesting.

That brings up the subject of fuel economy. Numbers are not yet out for the eTorque engines, but for ultimate economy the answer will still be a diesel, and I did not hear any information about when (or, actually, even if) the new Ram will get one. 

My lasting impression from both the Ram and the previous Wrangler launch is that FCA is genuinely throwing a lot of thought and engineering into its redesigned working vehicles. The new Wrangler retained its spot in my opinion as America’s own world-class expedition vehicle. I think the new Ram 1500 can stand confidently alongside America’s Big Two half-ton pickups, and all three are ahead of the import competition.

The JL Wrangler Part 2: Rubicon

Scuffing tires on the demo course. Matt Scott photo.

Scuffing tires on the demo course. Matt Scott photo.

I wonder if any of the corporate liability attorneys who signed off on the Jeep Wrangler Rubicon’s front and rear diff locks, anti-roll-bar disconnect, 4:1 transfer case, and 77:1 crawl ratio were ever given a demonstration of the vehicle’s capabilities.

Probably not. “Oh, those modifications? They, um, just help traction. You know, to enhance safety,” the engineers told them, winking broadly at each other. 

And in a very real sense the engineers were telling the truth—it’s just that they were referring to traction on, say, a 30-degree hillclimb studded with boulders the size of engine blocks. Which is where I found myself, with FCA’s Scott Brown in the passenger seat, in an arrest-me-if-you-can-follow-me-red two-door Rubicon, top removed and windshield folded down. The eight-speed auto box was manually selected to first in low range, anti-roll bar disconnected, and both diffs locked. I noted with approval that (along with the anti-roll bar switch) the JL’s diff-lock selector has been moved to the center of the dash for easy access (in a bright red escutcheon to boot), and hugely simplified from the JK’s: Push down for rear lock, up for front and rear. Amazingly, the new electrohydraulic power steering gave me zero indication that the front wheels were rigidly joined; normally a locked front diff firms up even power steering noticeably.

Much-simplified diff-lock control. "Sway bar" button disconects front anti-roll-bar.

Much-simplified diff-lock control. "Sway bar" button disconects front anti-roll-bar.

Through the windshield there was a lot of blue Arizona sky, and spotter Jim Horne’s arms motioning me straight up, and up, and then left across the boulders. Scott and I transitioned from being pressed into our seats to being pressed, respectively, against the center console and driver’s door. The side/down slope was enough to make Scott give a little whoop of excitement, and for me to appreciate the integrated roll cage surrounding us. The Jeep, of course, was loafing, idling in that 77:1 crawl ratio at half walking speed, each BFG All-Terrain tenaciously gripping granite (the techs hadn’t even bothered to air them down). A turn right back towards the sky, a pause while Jim wedged an extra rock under the left rear tire, then we were over, and being waved on to the next obstacle by the next spotter. (That particular hill would shortly be closed down for rebuilding after another journalist repeatedly applying too much throttle while ignoring instructions managed to send a bunch of those engine blocks tumbling down the slope.)

Jim Horne guides a Rubicon Unlimited up the hill.

Jim Horne guides a Rubicon Unlimited up the hill.

The JL Sahara Matt Scott and I had driven to get to the staging area had impressed me with its capability, and driver-independent traction-control systems are getting better with each generation. But the Rubicon is in a different universe. Even the best ABS-based traction control can’t match the ability to manually lock one or both axle differentials in advance of a limited-traction situation. Flip that center toggle switch upward in the Rubicon and you have Four. Wheel. Drive. Period. Combine that with the disconnectable front anti-roll bar, which hugely increases compliance—and comfort—on a rough trail, and a crawl ratio slow enough to let you watch cactus grow on your way past, plus excellent approach and departure angles (44º and 37º), standard BFG All-Terrains, etc. etc., and you have a vehicle unmatched by anything in its class in terms of backcountry capability—either in the U.S. or the rest of the world.

That much capability necessitates a strong foundation to withstand the stresses involved in powering a 4,300-pound vehicle up a torturous slope. While the JK Rubicon was more than up to the task, the JL raises the bar. The fully boxed chassis now employs 80 percent high-strength steel, with five boxed crossmembers. Torsional rigidity is up by 18 percent, yet, the factory claims, weight is down by 100 pounds. The next-generation Dana 44 axles have been improved as well: The front axle tubes are 10 percent larger in diameter, 14 percent thicker, and twice as strong as the previous versions. End forgings on the Rubicon are 11 percent stronger. Components no driver could ever notice have been studied, critiqued, and tweaked.

FCA's Scott Brown rides along. Matt Scott photo.

FCA's Scott Brown rides along. Matt Scott photo.

FCA’s introduction and their excellent driving course left little doubt that the JL Rubicon is everything the JK Rubicon was, and more. (Some might see the move from BFG Mud-Terrains to All-Terrains as a retrograde step, but it’s not. In a majority of situations not involving mud, ATs are the equal of if not superior to MTs. And the new tires certainly help reduce road noise, and definitely bump fuel economy.) So the Rubicon’s bona fides for competency in extremely rugged terrain remain unmatched by anything in its class. If you’re looking for a vehicle that can serve as a perfectly comfortable daily driver, then be nearly invincible for weekend explorations of any trail you have the skill to drive, it remains the icon.

The question is: If I were considering a Wrangler as an overlanding vehicle—that is, for long-distance, self-sufficient travel on a mixture of paved and dirt roads, with four-wheel drive sections definitely in the mix but little emphasis on difficult passages unless they were unavoidable due to route or weather—and if my funds were not bottomless, which way would I go? I evaluated two approaches, both of them the Unlimited (four-door) body style:

  1. Go basic and order a Wrangler Sport with suitable options. On FCA’s new Wrangler build site I specced a Sport with the same Pentastar V6 and excellent ZF eight-speed automatic transmission as the Rubicon, the standard black hardtop, Anti-Spin rear diff, all-terrain tires, and a few other relevant bits such as heavy duty electrics (240-amp alternator, 700-amp battery), etc., for $36,305. It would have the simple Command-Trac part-time four-wheel-drive transfer case with ABS-based traction control (which Jeep refers to as a differential brake). To be honest, this system is capable of handling 99 percent of the terrain I have experienced on extended journeys in South America, Australia, and Africa, even completely off-tracks forays into Egypt’s sand seas. (The Anti-Spin diff is designed to seamlessly handle slight differences in cross-axle traction; the more intrusive ABS- based traction control kicks in for more extreme variations.) Jeep lists the cargo capacity if the Sport at a middling 1,000 pounds, not including the driver. (One of the few disappointments of the JL redesign is the lack of a heavier GVWR option. I wonder if the upcoming pickup version will raise this.)
  2. Finance a bigger chunk and go for the Rubicon. In addition to the drivetrain and suspension features—4:1 transfer case, electric locking differentials front and rear, driver disconnectable front anti-roll bar, 4:11 diff ratios—the Rubicon boasts other standard features not available on the Sport: premium seats, an AC power outlet, a seven-inch touch screen, power heated mirrors, remote keyless entry, plus several premium options. I went through its build list, not going crazy with leather upholstery or any similar spurious extras, but nevertheless equipping it more upscale than the Sport, and came to $48,090. (I could easily have added another $4,000-$5,000 in bling.) Cargo capacity of the Rubicon is even less than the Sport—890 pounds.

Despite the slightly higher GVWR of the Sport, I’m pretty sure that for either vehicle I’d want heavier-duty rear springs and shocks if I planned on traveling with a passenger and a full load of equipment, food, and water. Even a load nearing but not surpassing the factory limit would depress the stock rear springs enough to upset the ride height and headlamp alignment. So that modification would cost about the same for either vehicle. Otherwise, what does one get for the extra $12,000 of the Rubicon besides—let’s not diminish this—the knowledge that anywhere in the world you traveled you would be able to tackle the toughest routes passable by any stock vehicle? 

One answer worth considering lies in those next-generation Dana 44 axles, a significant step up in strength and durability from those fitted to the Sport. Note: I absolutely do not think the Sport is under-equipped in that category (as long as you don’t try to cram stupidly oversized tires on it), but the overwhelming priority for an overland vehicle is reliability and durability, and there is no doubt that the Dana 44s would optimize that in a Wrangler. 

On the other hand, the higher (i.e. numerically lower) final drive ratio of the Sport—3.45 vs. 4.10—might make for slightly more relaxed freeway cruising at the expense of low-range crawling. However, with the eight-speed auto transmission on each, and taller tires of the Rubicon, I’m not sure how noticeable this will be, and I did not have a chance to directly compare the two, as I only had access to the Rubicon in the dirt. 

Of course the extra comfort (I wouldn’t classify them as “luxury”) items standard or available on the Rubicon would make traveling a bit more relaxing.

In the end—and I hope this doesn’t sound like a copout—I would buy the Rubicon if I had the funds, and be completely happy with the Sport if I did not. In fact, I’d leave for a trans-Africa trip in either with no hesitation.

Remembering to pack carefully, of course. 

Thanks for the photos, Matt!

Thanks for the photos, Matt!

The most interesting Land Rover I ever saw . .

. . . was not the fully kitted double-cab 130 in Namibia, or the 110 pickup veteran of the Rhino Charge in Kenya, or even the ex-Camel Trophy Defender owned by a friend. 

It was in the spring of 1986. Roseann and I had been doing surveys to map Harris’s hawk nests in the deserts north of Tucson. We’d driven up Highway 79 to the Gila River area early one morning, and after several hours of glassing for nests stopped to refuel our Land Cruiser in the dusty little town of Florence, whose single claim to fame was and still is the massive state penitentiary on its outskirts. We pulled into a Circle K, and Roseann went in to buy a couple of Cokes while I filled up.

Out of the corner of my eye I saw a vehicle pull in to another pump, and did a double take. It was an ancient Series 1 Land Rover 86—essentially an impossible vehicle to exist in Florence, Arizona, where anything not from the Big Three would have still been looked on even then as deeply suspicious and probably Democrat.

That it was local became apparent when the driver, a craggy 60-ish gentleman, got out, dressed in faded Wranglers, a tattered western work shirt, and a generic feed cap. I walked over and said hi, which he returned in a drawl as thick as gear oil. Yes, he lived there, yes, he’d owned the Land Rover for a couple decades, although, “I can’t remember where it’s made—somewhere in Europe I think.” As I silently gaped at this, he continued, “When I need parts the fellas at the NAPA here get them for me. Never had any trouble with it though.” He raised the hood and started the engine, which ticked away with a barely audible murmer through its oil-bath filter. 

The Land Rover was dead original—even the tires looked like they might have rolled it out of Solihull. Winch. Canvas hood. The only additions were a rifle rack and a CB radio.

“That your Tiyota?” He pronounced it tie-ota. Nodded when I nodded. “Mmm-hmm. Nice looking vee-hicle.”

Improbable enough already, but then—look closely at the photo here, scanned from a black-and-white print that is the only record I have of the encounter. See the bottle mounted in front of the windscreen on the driver’s side? Look even more closely and you might spot the pipe leading from it, through the fender, and attached to a fitting on the exhaust pipe.

“That? That’s my gopher getter.” Said with not a little pride.

It turned out that Mr. . . . I never got his name . . . derived a fair amount of his income from eradicating the “gophers”—actually pocket gophers—that plagued the nearby farmers, burrowing up from underneath their crops. The bottle contained some viscous and evil-looking brown poison—I never got its name either—which gravity-fed through the tube and was emulsified in the exhaust stream, whence it was pumped via a hose into the holes of the unlucky gophers.

“My own invention! Kills ‘em real quick. No reason for 'em to suffer.”

I was not sure how he had determined this, but . . .

All the nearby landowners had his phone number as well as his CB handle, he said. Nope, no business name, just . . . whatever his name was. Paid in cash per dead gopher.

After a few more pleasantries, he said, “Well, you take care, young fella. Be seein’ ya.”

But we never did again.


The Holy Grail of FJ40 wheels and tires?

I’ve owned my FJ40 long enough to have gone through several generations of tire and wheel combinations. When I bought it it still had the factory steel 15 x 5.5-inch rims (with hubcaps), and absurdly skinny and short 215-series tires of a brand I do not recall, but which were genuinely tiny enough to hamper its performance on trails.

Santa Catalina Mountains, 1978

Santa Catalina Mountains, 1978

As soon as I could afford it I bought a set of then-de rigueur 15 x 8 white spoke steel wheels, and mounted larger Armstrong Norseman tires. Big improvement, although I could feel the increase in steering effort through the non-boosted box. At the same time I gave away those factory wheels and hubcaps—dumb move.

And there it stayed until the late 1980s, when I was starting to be aware of how things were done in other parts of the world. I became convinced that split-rim wheels were the absolute ultimate way to go—after all, you could break down a wheel and repair a tire anywhere, right? They were still standard equipment on Land Cruisers in Africa and Australia, right? So at some considerable expense I ordered a set of Toyota factory 16 x 5.5 split rims. When they arrived I was somewhat put off by their mass—they made the eight-inch steel white spokers seem light—but duly had mounted a set of LT 235/85 16 BFG All-Terrains. 

In short order two tire-shredding blowouts revealed that something was not right. It developed that the tire retailer had installed improper liners in the wheels. That was corrected, and despite shaken confidence I began employing the Land Cruiser as a support vehicle while leading sea kayaking trips from remote beaches in Mexico. And indeed it was true: I could break down a wheel and repair a puncture anywhere. Clients were impressed. Several times.

With a split-rim wheel and tubed tire, any puncture means completely breaking down the wheel to patch the tube. A nail hole that could be fixed in five minutes with a plug kit required 45 minutes of hard labor. The romance was wearing thin. By this time I was chalking up some experience in Africa with split-rim-equipped vehicles, and noticed a difference there. First—purely personal theorizing here—the economy of most African countries meant that random nails and screws lying on roads simply didn’t exist. They were too valuable. Also, the tires employed there are typically eight or ten-ply bias-belted 7.50 x 16 beasts that seem more or less immune to simple thorn punctures. I was experiencing fewer punctures on the back roads of developing-world countries—both in vehicles I drove and those in which I was driven while on assignment—than I was in the U.S. and Mexico.

African Firestone tire on a split rim.

African Firestone tire on a split rim.

By now I had replaced the three-speed transmission in the FJ40 with an H41, a four-speed with a low, 4.9:1 first gear. I thought that would allow me to install a slightly taller tire—and I was ready to dump the split rims and try alloy wheels. So on went a set of American Racing Outlaw II 16 x 7-inch wheels, and LT255/85 16 BFG Mud-Terrain tires. Given the two-inch OME lift on the vehicle, this was the outer limit of what would fit without clearance issues or ghastly body-cutting and cheesy riveted-on fender flares. Indeed at full left lock the left tire slightly contacted the steering box link. But otherwise the tires worked fine, and the combination stayed on for over a decade.

Still . . .

Two things began to nibble at my subconscious. First was the memory of those BFG All-Terrains in 235/85 16. So many things about the size seemed perfect. They were tall enough to noticeably benefit ground clearance, yet their narrow tread width made steering easy. Also, by this time the Land Cruiser had become something of a classic rather than just an old four-wheel-drive “jeep,” and I was kind of missing the whimsical look of those factory hubcaps. It would be easy to buy a replacement set of Toyota 15 x 5.5-inch wheels and hubcaps—but there was no tire size in BFG’s 15-inch lineup equivalent to the 235/85 16. For a while BFG sold a 9.5 x 33-inch All-Terrain that would have worked, but it was discontinued. Some owners (and, by now, professional restorers), were squeezing 31 x 10.5 All-Terrains on factory wheels, but those were not quite tall enough and not quite narrow enough to suit. (The size is also technically far too wide for a 5.5-inch wheel.)

What I needed was a 16 x 5.5-inch wheel with clips for the factory hubcaps—and out of the blue a few months ago my friend Tim Hüber sent me a link to exactly that, available from Japan. They were . . . expensive, eye-wateringly so. And would additionally need to be powder-coated a proper gray, adding even more expense. But it was exactly the Holy Grail for which I had been searching.

Ordered, delivered, powder-coated, mounted. And . . . indeed, perfect. The ideal all-around tire size for an FJ40, and the amusingly perfect retro pukka look, too. 

One genuine surprise: I assumed going to a steel wheel from an alloy—even with a smaller tire—would add significant unsprung weight. Not so. One alloy wheel and 255/85 16 Mud-Terrain tipped my hanging scale at 73.2 pounds. The steel wheel and 235/85 16 All-Terrain? Seventy four pounds even.

Never say never, but I predict this will be the final solution to the Land Cruiser’s footwear.

Left: 16 x 7 Alloy and 255/85 16 MT. Right: 16 x 5.5 steel and 235/85 16 AT. Same weight.

Left: 16 x 7 Alloy and 255/85 16 MT. Right: 16 x 5.5 steel and 235/85 16 AT. Same weight.

Screen Shot 2019-05-04 at 9.10.21 PM.png

Now that's a proper suspension analysis

Our last trip to Australia and Tasmania, the first with all the modifications and additions to our Troopy completed, revealed some shortcomings in the suspension—no surprise with 180 liters of fuel and 90 liters of water on board, in addition to the cabinetry, pop-top, bumper and winch, etc. etc. It wasn't bad—the rear sagged perhaps an inch with everything aboard including us—but an inch is too much, and we could feel the shocks working hard to maintain control.

Daniel at the Expedition Centre in Sydney, who'd done all the work on the vehicle, had just one recommendation: A company called, humbly enough, The Ultimate Suspension.

TUS, as I'll call them, advertises "custom-built, fully integrated" suspension systems designed specifically for each vehicle, not just each model. After receiving the analysis above, I can't argue that their approach isn't thorough. I'm not sure what the percentages in the shock absorbers refer to—would 100 percent mean it's as comfortable as a Range Rover? Must ask. In any case it's interesting to see the weight at each corner and across the vehicle, and to know that (ahem, rather surprisingly) we're still safely under the Land Cruiser's GVWR, even with a full load of fuel and water.