Warn's 70th anniversary M8274-70 winch

0004176_limited-edition-70th-anniversary-m8274-70-winch.jpg

Warn’s venerable 8274 winch is one of two—the other being the Superwinch Husky—that could legitimately claim to be the best electric winch on the planet.

Each has its advantages. The Husky’s worm drive means it needs no external braking system; it is fully controlled whether powering in or out. The 8274’s spur drive gear train does require a brake but is significantly more efficient (about 75 percent versus 40 percent). It’s more a personal (or patriotic—British versus American) choice rather than a which-one-is-better decision.

Now, to celebrate the company’s 70th anniversary, Warn has announced a limited-edition, uprated version of the 8,000-pound-rated M8274-50. Only 999 will be available world-wide, at an eye-opening retail price of $3,100 (although $2,500 seems to be the going street price). The commemorative M8274-70 is rated to a full 10,000 pounds, and includes 150 feet of 3/8” synthetic line, a solid-state, waterproof Albright contactor rather than a solenoid, plus a few odds and ends such as uprated bearings, a stainless steel spool knob, and a billet aluminum hawse fairlead. (Warn’s site also notes that the winch’s box “features commemorative packaging.”)

I’ve had an 8274 on my FJ40 for about ten years now, and it has performed flawlessly both in the field and through many training sessions. So I delved into the new one to see what had changed besides the extra power (courtesy of a series-wound six-horsepower motor rather than the 4.6 hp version in mine).

And immediately this caught my eye:

“Up to 50% faster line speed at rated load vs. previous M8274-50.”

Fifty percent faster? One of my only complaints about the M8274-50 is that it is too fast already. Speeding it up even more is the last thing this winch needs.

Winching, more than any other recovery technique, is fraught with the potential for errors that could have disastrous consequences if the operator is not properly trained, paying one hundred percent attention, and ensuring that every step of the procedure is conducted in a controlled manner. The best way to guarantee a safe and successful winch recovery is to go slowly. The only exceptions I can think of to this rule are if you have stupidly bogged your vehicle below high tide line with an incoming tide, or have gotten stuck in the middle of a fast-flowing river that is scouring substrate out from under your tires and sinking the vehicle farther. Otherwise my opinion is that it is impossible to have a winch that is too slow. Indeed, on most recoveries or lessons with my 8274 I rig a double-line pull out of habit, just to ease the pace (since a double-line pull halves line speed while doubling power). I can’t imagine it 50 percent faster.

I wonder if the impetus behind this drive for faster line speed comes from a misdirected emulation of competition events such as King of the Hammers, where winches are commonly modified to achieve outrageous line speeds. Suffice to say that for overland travel, you do not want to use competition rock buggies as your build inspiration.

This in no way (well, barely) diminishes my respect for Warn’s 8274 series winches. The new one would be a fine choice for a heavier expedition vehicle in the 7,000-8,000-pound range. But I’d suggest employing a pulley for most recoveries—unless shark fins are circling offshore or trout are showing up in the footwells.

Factory vs. aftermarket

Aftermarket starter on the left; Toyota starter on the right

Aftermarket starter on the left; Toyota starter on the right

If you’ve ever turned over an engine by hand you know it’s no easy thing to do. You’re working against a lot of internal friction, plus the compression as each piston rises on the firing stroke. Your starter has to do the same job, except a lot faster. So it clearly needs to be built well.

Take a look at these two starters for a Land Cruiser F or 2F engine—an aftermarket unit on the left and a factory Toyota unit on the right. If you’re not familiar with how a starter works, notice the small gear visible at the top of each unit. When you turn the ignition key to start the engine, that gear slides forward and engages the flywheel behind the engine, and spins it rapidly to enable the ignition to catch and start the engine. Once it starts and you release the key, the gear slides back out of engagement.

It should be obvious that that gear is subjected to a great deal of stress—which is why the factory starter has a nose cone that supports the end of the shaft on which the gear slides, hugely increasing its stiffness (and also possibly helping keep random dirt and debris away from the shaft and gear).

Now look at the aftermarket starter. No nose cone, no support for the gear. Cheaper to make, for sure.

Which would you expect to last longer?

Handbrakes. Don't be one.

This is a handbrake.

This is a handbrake.

Burned in my memory is the first time I read a post on a popular overlanding forum by a fellow who wanted to go on a particular trip, except, as he put it, “The handbrake won’t go if there aren’t bathrooms.”

I was confused for a fraction of a second, until I realized the guy was referring to a human being—specifically his wife.

Shocked, I looked at subsequent posts to enjoy him get flamed for such a demeaning reference. Not only did he not; he had plenty of company. Since then I’ve run across the term dozens of times.

So is this.

So is this.

I’m sure the guys who use the term would act like it was I who were offending them, and laugh it off as “just a joke” if confronted, just as my stepfather used to laugh it off as “just a joke” when he referred to people as Pollacks and Nips, and worse. Spare me. No one uses such a reference as “just a joke.” It is a dehumanizing put-down and points out its user as someone lacking even a vestige of class.

Now that I have that off my chest, I would like to address the very real issue of differing expectations and needs while on journeys, because there is no doubt that many couples have them—especially when dealing with divergent attitudes toward “roughing it.” And let’s be honest: While in some cases it is the other way around (I know of several personally), usually it is the female half of the couple who resists the inconveniences associated with “roughing it.” So what to do?

This is not.

This is not.

Easy: Just make it not rough.

One of the benefits of the explosion in interest in overlanding over the last decade is the commensurate explosion in equipment of all kinds. It has never been easier to bring along most of the comforts of home. Here’s a look by category.

Bathroom. This is the big point of resistance for most women. It’s easy for men to forget that for a woman, going “#1” is basically as involved as it is for a man going “#2.” Fortunately there are numerous ways to make the procedure both comfortable and private. You can store a pop-up enclosure in the back of the vehicle and deploy and un-deploy it in seconds if privacy is necessary or desired. Portable toilet systems now range from basic but surprisingly comfortable seats that fit over a five-gallon bucket with a liner, to porta-pottis with a water reservoir for flushing, and cassette toilets that simplify emptying later. Add something as simple as a tap on a five-gallon water can for washing, and you’ll have all the same things covered as you would at home: privacy, comfort, and cleanliness.

Shower. Closely related to the bathroom issue, since the enclosure can serve both. However, bathing and changing is much easier in a fairly large and decently windproof enclosure (i.e. not a pop-up), so there’s nothing wrong with carrying a compact pop-up for on-the-road bathroom breaks, as well as a larger enclosure for camp duty as both toilet and shower room. There are lots of excellent products on the market that will provide a hot shower, from simple but effective hanging bags heated by the sun to engine-mounted heat exchangers to propane-heated units with 12V powered pumps. Go with whatever level of luxury you feel your mate desires—or deserves.

Bedroom. If you have a camper or trailer this is pretty easy. If not, consider either a roof tent with a dressing room attachment, or a ground tent with standing headroom (e.g., a Turbo Tent or a Springbar, two of my favorites). Equip the ground tent with generously-sized cots, thick Therm-a-Rest camp mattresses, a flannel-lined sleeping bags, and a real pillow, and there’s a good chance your significant other will wake up the next morning and say, “That was more comfortable than our bed at home.”

Kitchen. You might be fine with spooning SpaghettiOs out of a can heated in the fire when you’re out on your own. Or you may have the full-on Snow Peak Iron Grill kit. In either case, when your mate is along you need to orient the kitchen and food to her (or his) taste. Does she do the cooking at home? If so, would she like to in the outdoors as well given a sufficiently well-equipped kitchen? Then make it so. If she cooks at home but has no desire to do so on the road, then do your finest to provide her with excellent meals. With the superb 12V fridges available now, there is no excuse not to bring fresh produce and meats and have menus fully the equivalent of those at home. And if getting her out means skipping camp food for restaurants now and then, do it. Along those lines . . .

Hotels. I’ve talked with a surprising number of both men and women who enjoy camping—just not for weeks at a time. If your situation is similar, then work out trips and itineraries so that camp days can alternate with hotel or lodge days on whatever schedule works best. Do this for a while and you might find you both start being happy with more days camping and fewer under roofs.

Overlanding does not have to be an all-or-nothing proposition, unless your loved one simply does not like camping at all, period. Even in that case it’s possible to compromise. Enjoy civilized trips together, then every once in a while you can take off on your own, skip showers for a week, pee on trees, and eat SpaghettiOs.

Just don’t be the handbrake on your relationship.

More praise for high-tooth-count ratchets

Top to bottom: and 80-tooth Snap-on 1/2-inch ratchet, a 72-tooth 3/8-inch Britool ratchet, and a 72-tooth 1/4-inch Proxxon ratchet.

Top to bottom: and 80-tooth Snap-on 1/2-inch ratchet, a 72-tooth 3/8-inch Britool ratchet, and a 72-tooth 1/4-inch Proxxon ratchet.

I’ve written here and there in these pages and elsewhere of my strong preference for ratchets with a high tooth count—at least 72 or 80 (some have even gone beyond that).

The advantage to this is the ratchet handle does not have to pivot as far to engage the next tooth (or teeth, as most ratchets engage multiple teeth). And that is a significant advantage when working in tight spots where you do not have much room to swing the handle. An 80-tooth ratchet needs just 4.5 degrees of movement to advance the socket, whereas, say a 48-tooth ratchet would need 7.5 degrees. It might not sound like much, but sometimes it means the difference between very limited access and none at all.

I had another demonstration of this advantage the other day, when I had to replace the clutch master cylinder on the FJ40. For some reason the cylinder I bought interfered just barely with the brake master cylinder’s booster, so I had to loosen the latter from inside the footwell. And the upper left bolt of the bracket sits just so between a reinforcing strut and the brake pedal, so that swing room for my ratchet was reduced to . . . well, just abut 4.5 degrees. However, that was no problem for the 80-tooth 3/8ths ratchet I had on hand. 

You might think that the strength of the ratchet head would suffer with such a fine engagement, but in fact modern ratchets are probably stronger than older, coarser models due to better metalurgy and that multi-tooth engagement. One of my favorite tool investments is a Snap-on SX80-A flex-head 1/2-inch ratchet, with an 80-tooth head and an 18-inch handle—the same length as a common, non-ratcheting breaker bar used for loosening the tightest large nuts on transmissions and suspensions. And that’s how I use this, knowing that Snap-on makes the same ratchet with a 24-inch handle. Obviously they have confidence in that head. 

IMG_4308.jpg





A different Dormobile

Screen Shot 2019-02-23 at 2.39.02 PM.png

Most people reading this are familiar with the iconic Land Rover Dormobile and its clamshell pop-up roof, which converts a long-wheelbase Series II into a stylish camper with full standing headroom. But I didn’t realize that Dormobile modified other vehicles as well, such as this 1961 Bedford CA van. Very practical if you didn’t need the four-wheel-drive of a Land Rover. Read more about it on Silodrome, here.

The truth about aftermarket "high-performance" brakes.

ef503f590ddcb9e3ab373d5858aaaa5f.jpg

Few people reading this would argue that the single most important component of your vehicle is the braking system. Everything else—engine power, handling, comfort, fuel economy, off-pavement capability, number of USB outlets—is secondary to the critical need to be able to stop that vehicle safely and quickly, time after time.

Yet despite that single-purpose, critical function, there are a lot of myths circulating about brakes, how they work, and how they can be improved—and a lot of those myths originate from, or are promulgated by, companies trying to sell you something.

In terms of physics, brakes do exactly one thing: They convert the kinetic energy of the moving vehicle into thermal energy, i.e. heat. All brakes function this way, whether disc, drum, or Fred Flintstone’s feet. In fact, even the parachute on a top-fuel dragster converts the kinetic energy of the vehicle into heat, through friction with the atmosphere; it is simply dissipated more diffusely in the dragster’s slipstream.

The energy those brakes must convert does not increase linearly with speed; instead it increases with the square of speed (kinetic energy equals mass times velocity squared). Thus a vehicle moving at 50 mph requires four times as much energy conversion to stop as one moving at 25 mph, and one moving at 100 mph requires sixteen times as much. Given the same speed and the same vehicle weight, the heat produced by stopping is also the same, whether it is done via cast-iron drum brakes on a Series 2 Land Rover or the carbon-ceramic discs on a Porsche GT3.

The basic operation of a brake goes like this: When the driver presses the brake pedal, the pedal pushes a plunger into a hydraulic cylinder filled with brake fluid—a viscous substance resistant to heat. The cylinder, called the master cylinder, is connected to a brake caliper in each wheel via tubes. The caliper wraps around the perimeter of the brake disc, and incorporates a piston on each side (sometimes several), which bear against brake pads made of friction-resistant material. The master cylinder forces the brake fluid, which is essentially incompressible (more about that later) through the tube and against the pistons in the caliper, which in turn push the brake pads against the disc, squeezing the disc (also called the rotor) with tremendous force, creating friction and slowing the vehicle.

disc-brake-overview.jpg

The drum brake, which has virtually disappeared except on the rear axles of the cheapest economy cars and Toyota Tacomas (see here), is different. Instead of a flat disc there is a cast-iron drum shaped like a flat pan with vertical sides, turned vertically so it rotates with the wheel. The master cylinder pushes against a slave cylinder (a quaint term, no?) which in turn pushes a friction-resistant brake “shoe” against the drum. Drum brakes have (mostly) gone the way of flathead V8s and carburetors because they retain more heat (more on that soon) and don’t work well when wet.

There have been many advances to the basic hydraulic braking system. Originally (and still in a few applications) each caliper employed only one piston and the caliper could slide slightly back and forth. The piston pushed one brake pad against the disk while simultaneously pulling the opposite pad against the other side. This was much less efficient than the later multi-piston calipers. Modern brake calipers on high-performance sports cars can employ six or even eight opposed pistons.

Virtually all brakes today are power-assisted via a vacuum-operated device incorporated into the master cylinder. This reduces braking effort, sometimes hugely in the case of a heavy truck. Also, all brake systems are now (by law) dual-circuit: The master cylinder is essentially two master cylinders combined in line, each of which operates on both front brakes and one rear brake. This redundancy insures that if one circuit fails, the vehicle will still retain reasonable stopping power.

A big advance in the efficiency of brakes arrived with anti-lock braking systems (ABS), which use a simple sensor at each wheel to monitor revolutions of the wheel. If a sensor detects a wheel locking up (i.e. turning slower than the others or stopping altogether), the ABS computer pulses power to that brake so that it unlocks. This system reduces braking distances and increases the driver’s control over the vehicle. (To see why a turning tire stops shorter than a skidding tire, look here.)

As vehicles have become heavier—and wheel diameters larger—manufacturers have been installing larger and larger-diameter discs in their brake systems. Most disc brakes are now ventilated—the disc comprises two discs joined by a vaned center section to dissipate heat more effectively. Thanks to such advances—as well as better tire compounds—average braking distances have been steadily shrinking.

Mostly.

Obviously it’s easier to stop a light vehicle than a heavy one. By extension we can state categorically that it is easier to stop, say, a stock FJ60 Land Cruiser than one that has been modified with an ARB winch bumper and a Warn 9,000-pound winch, a rear spare/jerry can rack, a roof rack, a 60-liter fridge, a drawer system, an auxiliary fuel tank, and . . . you get the picture. With surprising suddenness your 5,000-pound Land Cruiser x velocity squared can become a 7,000-pound Land Cruiser x velocity squared.

I discovered the results on our own FJ60 on a biological survey in Mexico’s Sierra Madre some years back. This 60 had a turbodiesel engine conversion plus most everything on the list above. And on a steep, winding descent of about 3,000 feet, the brake pedal began to feel mushier and mushier, even as I downshifted to use engine braking. By the time we reached the plains the brakes had seriously deteriorated, and only regained effectiveness after ten minutes of cooling down.

FJ60, 8:22:12 - 3.JPG

I had experienced classic brake fade.

Brake fade can occur essentially two ways. First, a brake pad can overheat from extended application—such as a long descent—and form a slick glaze on its surface. When this happens the brake pedal will still feel firm, but increased pressure will have little or no effect. Second, the brake fluid itself can heat to its boiling point. When this happens, the fluid turns to a gas—and gas, unlike the fluid, is compressible. So your desperate standing on the pedal just compresses the gas in the calipers and does little to squeeze the brake pads. This is what we experienced. The condition can be aggravated if you don’t regularly flush your brake system. Brake fluid is hygroscopic, meaning it absorbs water, and since water has a much lower boiling point than pure brake fluid, old, contaminated fluid can cause premature boiling and fade.

Of course even stock vehicles with no weighty accessories bolted to them can be subject to brake fade, and even if no calamities ensue when it occurs it is a deeply unsettling experience. The logical first response is, “I need better brakes!” Indubitably true, but the path to obtaining them is fraught with hype and numerous ways to spend lots of money for very little if any gain.

Let’s start with that brake fluid. Brake fluid is graded on a DOT scale, based on its minimum  boiling point, both dry (uncontaminated with water), and wet (contaminated). Most braking systems come from the factory filled with DOT 3 fluid, which has a minimum boiling point of  401ºF dry and 284º wet (see now how much water can degrade your brakes?). Dot 4 fluid is rated at 446º and 311º minimum, respectively, and DOT 5.1 fluid carries a 518º and 374º rating. So simply spending 20 bucks or so upgrading your brake fluid can give you a full 100-degree margin over DOT 3 before gassing occurs. Note that these standards are minimums; many premium brake fluids will perform well above that and will say so on the label. And what happened to DOT 5 fluid? That’s a silicone-based fluid as opposed to the glycol base of DOT 3, 4, and 5.1. You can mix glycol-based fluids all you like, but cannot mix glycol and silicone fluids.

It will do little good to install better, high-temp brake fluid if your brake pads are sub-standard. Most vehicles come from the factory with organic-compound pads, or NAO (non-asbestos organic). These are sufficient for most use—they are quiet, don’t create much brake dust, and are easy on the discs—but if overheated can be subject to the glazing we discussed earlier. Semi-metallic pads, which are a mixture of iron, copper, steel, and graphite in an organic matrix, are significantly more resistant to glazing, at the expense of (sometimes) more noise, more dust, and faster disc wear—and of course slightly higher cost. A third type of brake pad, ceramic, attempts to solve the noise and dust issues of semi-metallic pads, and is resistant to fade, but less aggressive and generally not recommended for heavy-duty use, especially in cold climates—although the technology is still advancing..

So if your braking system is in good order, you’ve upgraded your brake fluid and switched to semi-metallic pads, and you’re still experiencing brake fade, what then? (I’ll refrain from suggesting, “Leave some of that crap at home.”) It might be time for a more drastic upgrade.

And that’s where marketing hype gets really tricky.

Many commercial kits (as well as a whole bunch of do-it-yourself threads on forums) “upgrade” the front brakes—where most braking occurs—simply by means of replacement calipers with more and/or larger pistons and larger pads than the originals. More pistons equals more squeeze and better braking, right?

Not so fast.

Remember all that kinetic energy we’re turning into thermal energy every time we stop? That energy (heat) has to be dissipated to enable repeated stops—or a safe descent down a mountain grade—without overheating the pads or brake fluid. And the way that heat is dissipated is through the brake disc. So if you install more powerful calipers on your existing discs, here’s what’s likely to happen: You’ll take the vehicle out for a trial run around town, and be impressed at the increase in stopping power. Those new four- or six-piston calipers grab that disc right now. Awesome. So you’ll then head confidently to that long downhill that resulted in a scary spongy brake pedal last month, and . . . oh. Whoa. Halfway down, the pedal feels like it’s got an entire bag of Sta-Puft marshmallows between it and the calipers. That’s because you’ve installed the means to inject more heat into the braking system without installing the means to get rid of it. As long as you’re just trundling around town you’ll get some benefit from the more powerful calipers, but under prolonged application all they’re likely to do is make your fade problem worse.

zdjecie1.jpg

Okay . . . plan B then. Let’s install a set of those fancy (and awesome-looking) cross-drilled brake discs. You know, like Porsches and Ferraris have? Cross-drilled discs stay cooler, right, with all those holes?

extreme_brake_rotor.jpg

Sorry . . . wrong again.

Cross-drilling of brake discs began in the early days of disc brakes, when existing pad materials and adhesives tended to outgas strongly when heated. Cross-drilling relieved the fractional layer of (compressible, remember) gas the pad would exude between it and the disc. But modern brake pads exhibit virtually none of this outgassing. More importantly, a cast-iron brake disc relies on its mass to absorb and dissipate heat. When you drill a bunch of holes in it, you are reducing that mass. (One company actually boasts that its drilled discs are 16 percent lighter than non-drilled discs.) Some arguments—especially from those who sell them—still maintain that the ventilation and added surface area of cross-drilled discs provide enough cooling to offset the loss of mass. But the further I investigated, the more testimonials I read from objective experts in the field who called nonsense. At best, many referred to any cooling effect as a wash, and several pointed out how often cross-drilled discs wind up plugged with brake dust—a giveaway that not much air flow is occurring through those holes (unlike the well-documented radial flow through the center vanes of a ventilated disc). Add to that the fact that, even when properly cast in and chamfered rather than simply drilled, cross-drilling can introduce stress risers into the disc that promote cracking, and you have a powerful argument against it, no matter how stylish it looks. (And if you look at the ads from companies who sell them you’ll be amused at how many mention the style factor as an actual reason to spend your money.)

The sole theoretical advantage to drilled discs mentioned by those same experts was a slightly enhanced initial “bite” in wet conditions, when the holes might provide an exit for surficial water on the disc. But brake pads quickly squeegee water off that surface anyway, so even this attribute is of questionable value in the face of the expense and loss in mass of a drilled disc.

Thus we can say pretty confidently that replacing your plain brake discs with cross-drilled discs of the same size will probably result in no reduction in fade, and could conceivably exacerbate it.

(Incidentally, the above does not apply to disc brakes on motorcycles, since a motorcycle disc is a solid rotor rather than a vented, double-sided unit. On a solid rotor, cross-drilling does at least theoretically create some turbulent cooling flow.)

What about the more recently popular slotted discs? Slots actually perform a different function than drilling. The edges of the slots perform a microscopic scraping function on the pad, keeping the pad surface fresh and possibly forestalling glazing. While they won’t in themselves enhance cooling or prevent heat-related fade, they might help forestall the fade resulting from overheated pads of inferior composition. Be advised, however, that slotted discs, as you might expect, will wear out pads more quickly than solid discs, and are likely to exacerbate any brake-dust issues.

Inevitably, aftermarket manufacturers are now offering discs that are both cross-drilled and slotted. At least the slots will provide some function, and where the slots are there is less room for the pointless holes . . . 

Features-DSL-1.png

All this leads to a logical conclusion. Once you’ve optimized your brake fluid and brake pads—and assuming the rest of your braking system is operating as it should—the only sure way to add braking power and reduce the chance of fade is to install, surprise, larger brakes—specifically discs of larger diameter and/or width, with calipers to match. Sometimes this is possible within the constraints of your existing wheels and front end design, sometimes it is not. 

Automobile manufacturers are perfectly aware of this. To give you a random example—outside the realm of overland vehicles but one with which I’m familiar—when Porsche upgraded the 1983 911SC to the 1984 Carrera, including a 15-percent bump in power, they improved the braking by increasing the width of the front brake discs from 20 to 24 millimeters, while keeping the diameter the same at 289mm. For the significantly more powerful Turbo of the same era, they increased both the diameter and the width of the discs, to 300 and 32mm respectively. Those were the largest brakes that could fit within the factory 16-inch-diameter wheels. When Porsche added even more power, they switched to larger-diameter wheels as well to accommodate larger discs.

There is one minor exception to the only-bigger-is-better rule. If you look at different aftermarket discs, you’ll notice significant variations in the spacing of the center cooling vanes. Inexpensive discs will be made with more widely spaced slots, which means there is both less mass in the disc to radiate thermal energy, and less radial air flow as well. The one way an aftermarket disc of the same dimensions as the stock disc might outperform it is if the aftermarket disc has a higher density of vanes, and thus weighs more than the stock disc. StopTech, for example, makes a replacement disc for the Tacoma that is stock diameter, but weighs over a pound more, thanks to more closely spaced vanes. That translates to more thermal capacity.

A comparison of vane spacing on a vented brake disc.

A comparison of vane spacing on a vented brake disc.

Looking at our own class of vehicles, it is all too easy to find “high-performance” brake kits comprising nothing but inexpensive stock-sized replacement discs that have been cross-drilled and/or slotted. Some of the claims for these border on outrageous.

Screen Shot 2019-02-17 at 5.17.15 PM.png

Note that line, “Improves stopping power up to 30 percent over stock brake rotors.” Seriously? Thirty percent meaning 30-percent shorter stopping distances? Or thirty percent less fade? I’d love to see an independent test of that claim. Also, there is simply no chance that their “custom slots” do any cooling, and they will more than likely increase dust due to the scraping function. Finally, check the “reducing heat” claim at the top, which we know from physics is impossible. The only component in this kit likely to modestly improve braking performance is the semi-metallic pads, if they are replacing stock pads—and those certainly won’t “reduce noise.” That’s a stunning amount of misinformation in a single ad.

Finding kits to actually upgrade brakes is much, much harder, in part because it so often requires installing larger-diameter wheels as well. TRD offers a front disc upgrade kit for Tacomas that increases the disc size from 319mm to 332 mm but still fits within the stock wheels. That’s a worthwhile enhancement.

Redline Land Cruisers offers a Big Brake kit for the front of FJ40s, 55s, and 60s that increases the disc diameter from 12 inches to a full 13.3 inches and includes calipers from a later 100-series Land Cruiser—a significant upgrade. But the kit requires a switch to 17-inch wheels for clearance (the company also wisely recommends rear discs, a larger master cylinder, and a proportioning valve to correctly balance front-to-rear braking force). They also mention a big brake kit for 16-inch wheels, but I’ve not received any more information on that one.

I’ve seen a few other legitimate kits for various vehicles, but there is far more in the way of chaff to wade through to find it. The good news is, I suspect for the majority of us a simple upgrade to better pads and fluid will solve anything but chronic brake fade. If that won’t do it, at least now I hope you’ll be better able to distinguish hype from fact. 

And if you really want to drill holes in something, maybe you could take up carpentry . . .