Tool storage

Tool boxes 1.jpg

Carrying tools in a vehicle is always a balancing act. 

First you have to decide how many to bring. Do you go with some screwdrivers and a pair of pliers, or do you go the one-case-tool-kit route discussed here in the past, and wind up with a comprehensively stocked but 62-pound-heavy Pelican case? 

Then you have to decide how to carry them. A hard case such as the Pelican is durable and easy to secure, while a soft case saves weight and can be quieter. You can go with a steel chest with a top compartment and drawers, which is excellent for organization but very difficult to keep from rattling. 

Some months ago I began assembling a tool kit that went the middle route in terms of contents. I tried to include everything I would want to do minor repairs up to and including such things as replacing a serpentine or timing belt, an alternator, or a water pump, and fit it all in a Blue Ridge Overland Gear Tool Bag (see here). After some experimentation that kit now comprises:

  • Set of screwdrivers
  • Combination wrenches from 8mm to 19mm
  • 3/8” socket/ratchet set, standard sockets 8mm-19mm, deep sockets 10mm-19mm
  • 1/4” socket/ratchet set, standard sockets 5mm-15mm
  • Channel-lock pliers, Knipex pliers, needle-nose pliers
  • Side cutters and wire stripper/crimper
  • Ball pein hammer
  • Box knife with spare blades (which function as gasket scrapers, etc.)
  • Hex keys

That totals 15.4 pounds with the bag—not bad at all. And it has been working very well for minor repairs. However, it is near capacity. I could fit in a few cold chisels and a circlip plier, for example, but that would be it. If I wanted or needed to carry more tools I’d need another solution. Of course I could add another Blue Ridge bag, but I’d still be limited in my tool selection by things that simply wouldn’t fit—a hacksaw, for example, or my 18-inch 1/2” Snap-on ratchet, or a big no-bounce hammer such as the Park model here

Alternatives? A smaller Pelican case than the 1550 is an obvious and excellent choice, but I wanted to try something different.

I’ve always been attracted to cantilever tool boxes. I like the elegant way they bloom open, and the organization offered by the trays, whether it’s a two- or four-tray model. Perusing the usual sites revealed lots of Chinese-made versions for under $30, but the innate complexity of a cantilever box made me leery, and one I inspected at a hardware store did nothing to relieve my prejudice. So I landed on an $80 Italian-made Beta C20 four-tray box on Amazon (“Tools not included”), in can’t-miss orange. I was impressed with the quality, which seemed a definite step up from the cheaper models. 

Tool boxes 2.jpg

Compromises immediately became apparent compared to the soft case. Noise, chiefly—I could strap down the Blue Ridge bag so it barely tinkled; not so the steel box. I’d need to use One-Wrap velcro straps to bind wrenches and things to cut down on the racket on a bumpy road with the box in the back of the FJ40 (in the bed of a pickup or elsewhere more isolated it wouldn’t be a problem). Weight was also an issue—with the same contents as the Blue Ridge bag it was eight pounds heavier. Since I always secure tool cases with a ratchet strap, I don’t consider the steel box to be significantly more of a hazard in an accident—you wouldn’t want to be hit in the head with a “soft” case filled with 15 pounds of steel—but it does need more of its own space, and could conceivably gouge other equipment if not packed carefully.

On the other hand, the organization of those top trays is a wonderful feature: Grabbing frequently used tools such as screwdrivers or wrenches is easy. And the capacity is vastly up on the bag; my long ratchet, hacksaw, and hammer fit lengthwise easily, and the volume in the main compartment would allow me to carry significantly more tools if I wanted or needed to. It wouldn’t match the capacity of the Pelican 1550, but then I couldn’t stuff enough into it to match the weight either. So I call it a viable alternative for a mid-sized tool kit, and worth considering depending on your own needs.

The four-tray cantilever box containing the tools from the Blue Ridge bag. Plenty of room left over. 

The four-tray cantilever box containing the tools from the Blue Ridge bag. Plenty of room left over. 

Will I ever learn?

Soldering iron.jpg


A cockroach brain has barely a million cells, whereas a human brain has about 100 billion. Nevertheless, cockroaches are capable of learning and remembering things such as mazes.

I'm not sure about myself.

Last week I needed to install a new set of Baja Designs LED lamps on the FJ40—an S2 Sport reversing lamp, and a pair of XLR-Pro driving lamps up front. To incorporate the wiring harness of each into the existing reverse and driving lamp wiring harnesses, I wanted to properly solder the connections to ensure connectivity and longetivity. However, my good soldering gun was out at our desert cottage, 40 miles away, and we needed to stay in town for several commitments. So I thought, I’ll just buy a cheap soldering iron to have here, and ordered one from Amazon with next-day delivery. Just $19.99. You can already see where this is going, can’t you?

Indeed. The kit arrived, in a plastic box with a coil stand and some accessories. Next morning I got to work—and the iron proved utterly incapable of heating a connector sufficiently to melt flux-core solder on a 50-degree morning. Or, later, on a 65-degree day with a trace of a breeze.

Sigh . . .

So I drove to a hardware store and bought the identical 100/140-watt Weller soldering gun I have at Ravenrock ($36.95) and had the connections soldered in minutes.


Anyone need a heated coffee stirrer?

Buy good tools.


Tire repair in the field

Screen Shot 2018-02-08 at 7.24.29 AM.png


I’d heard the unmistakable hiss of a punctured tire losing air, and alerted my partner, who was driving the Ford pickup we were using to conduct road surveys in southern Nevada. Our job took us down scarcely used tracks with significant incursion from creosote bushes, which leave vicious little daggers sticking out around the base of the plant as the perimeter dies off. This was our third puncture today—and it was not yet 8:00 in the morning. 

Two minutes later we had the tire repaired and had resumed collecting GPS data. We didn’t even bother to add any air, much less replace the punctured tire with the spare.

Tire failure is by far the number one cause of vehicle breakdowns in the backcountry, whether you are exploring Nevada or Namibia. Yet I’m astonished at how many people still rely on a single spare and maybe a can of fix-a-flat as backup on remote excursions far from AAA. The irony is that the farther you are away from well-traveled routes and outside assistance, the higher the possibility of running into projecting root splinters, knife-edged rocks, or even an off-camber rut that can pop a tire bead right off the rim and deflate it instantly. 

Why not be prepared, and self-sufficient? With a few tools, a good air compressor, and a proper repair kit, you’ll be able to repair any tire mishap short of a shredded blowout and be on your way.

Most tire problems result from simple punctures in the tread area, where the tire actually contacts the ground. Close to civilization, likely culprits include nails, bolts, and screws. Farther afield, you might run afoul of those creosote daggers or any number of other biological or geological hazards. At higher speeds, punctures typically occur on the rear tires—the front tire rolls harmlessly over a nail or screw lying flat, but pops it into the air where it can land pointy end up just as the rear tire passes. At low speeds, it’s more often the front tire that will find some projecting bit. A nail that embeds itself in a tire might not make its presence known for hours, since it forms a partial plug and slows deflation. A root end is more likely to puncture and pull out, causing rapid loss of air and possibly an audible warning. 

The easiest and quickest way to repair a simple puncture is with a plug kit (which is what we used in Nevada). A tire plug comprises a short length of rubber-adhesive-impregnated nylon yarn, which is inserted into the puncture with a special tool, after reaming the puncture with another tool. Cheap plug kits are available everywhere, but skip them—plugging involes a fair amount of force, and you don’t want to push very hard on a plastic-handled tool embedded with a steel rod. High-quality plug kits with sturdy tools and better plugs come from Safety Seal and ARB. By far the most comprehensive tire repair kit I’ve used is the Ultimate Puncture Repair Kit from Extreme Outback, which includes not only plugs but an exhaustive assortment of patches, spare valve cores, valve stems, a valve core tool—everything you’d need to be self-sufficient on any trip up to and including a global circumnavigation.

The basic tools in a plug kit comprise the plugs, a reamer resembling a round file, and an insertion tool that has a large, slotted eye at the end. How do they work?

High-quality plug tools from Extreme Outback.

High-quality plug tools from Extreme Outback.

Picture yourself at the side of the trail with your plug kit and a slowly collapsing tire. You can jack up the vehicle and remove the tire and wheel if access is limited, or leave it on and slowly roll the vehicle while looking and listening for the source of the leak. Let’s assume you spot a nail head embedded in the tread, and it is accessible. The first step to repair the hole is to prepare the plug in advance, to minimize leakage. Pull a plug free from its cellophane packaging—you’ll find it ridiculously difficult due to the adhesive, but surprisingly it doesn’t stick to your fingers. Pinch one end flat, and insert it into the eye of the insertion tool; pull through to its midpoint. You’ll have to pull quite strongly to get it in there. Your plug kit should come with a tub of lubricant; once the plug is positioned in the tool dunk the end in it to adhere a small glob to the plug.

Now you’re ready to prepare the hole. With a multitool or pliers, yank out the offending bit (the ARB kit thoughtfully incudes needle-nosed pliers). The next step is completely unintuitive: You’re going to make that hole bigger, so the plug can fit. Insert the toothed reamer into the hole—it might take some real shoving—then work it in and out briskly a few times. Don’t be gentle; move it around and twist back and forth. If the puncture is in the tread area you’ll be able to hear and feel the steel belt as the reamer rasps through it.

Screen Shot 2018-02-05 at 9.39.08 PM.png

Once it moves back and forth easily, set it aside. Insert the tip of the tool and the plug into the puncture. Again you’ll need a strong shove to get the tip and the doubled plug into the tire. Push until just a half inch or so of the tips of the plug shows above the tread, then pull the tool straight back out—no twisting on this. The split edge of the eye will first pull the middle of the plug back into the puncture, packing it tightly with vulcanizing material, then free the plug so the tool pulls out, leaving the plug in place and the puncture instantly sealed—no waiting for glue to dry. Trim the plug as flush as possible with a knife or razor blade, and you’re finished. The tire manufacturer will warn direly that this is a temporary repair, but I’ve known tires with just a few hundred miles on them repaired thusly that went on to live out their full tread life. If the tire has deflated enough so that pushing on the insertion tool just pushes in the face of the tire, add some air with your compressor to give it more resistance.

Push the plug in until the ends stand just clear of the tread.

Push the plug in until the ends stand just clear of the tread.

What if the hole is larger in diameter than one plug will seal? Try two—or three, or four. My friend Tim once repaired a sidewall split with no fewer than five, and it got him back to civilization. While we’re on sidewalls, note that a plug repair there really should be considered an emergency fix only. The sidewall, even on a sturdy all-terrain tire, lacks the structural integrity of the belted tread area—it’s designed to flex, and can’t support the plug as well. Nevertheless, a sidewall plug repair should hold just fine for the length of a trip. (Also note that, as excellent as plugs are, they won’t seal every puncture. Recently on a trip to Mexico a friend holed a tire with a sharp branch right at the corner of the tread and sidewall. The result was a flapped triangular hole that I simply could not get to seal, even with three plugs. It happens.)

Tim’s five-plug repair notwithstanding, a much better way to repair a sidewall split (sidewalls collect splits from rock gashes and pinching more often than they do simple punctures) is with a patch on the inside of the tire. To do that you’ll need access to the inside, which means you’ll need to break the bead, a procedure that sounds alarming but really doesn’t break anything. 

The inside edges of an automobile tire, where they grip the rim of the wheel and seal the air inside, are each reinforced with a very stiff wire cable embedded in thick rubber—the bead. The wheel is made with a corresponding groove running around its inside and outside edge. When your local Discount Tire store tech mounts a tire, his fancy machine first levers the tire over the rim so the beads are inboard of the grooves. He then applies a sharp blast of high-pressure air, which pops both beads outward and into their respective grooves. The tire can then be fully inflated. The grooves hold the beads very tightly—even running for some time on a flat tire will rarely unseat them.

When your tech needs to remove a mounted tire, his machine pries the beads loose with a powerful automatic lever. In the field, you’ll need to be more creative. Trust me, just jumping up and down on a deflated tire won’t work. (Important note: Those of you with shiny alloy wheels—or shiny steel wheels for that matter—will find that some of the following techniques might scratch and gouge them. I hereby absolve myself from responsibility.)

The first step is to remove the valve core to ensure the tire is completely deflated and to easily let out additional air as you compress the carcass. Both the Extreme Outback and ARB kits come with a valve core removal tool. Mark the tire and wheel with chalk or anything handy, to make sure you re-install it in the same place and don’t mess up the balance (the EO kit includes chalk). To “break” the bead you need to apply inward force to the sidewall of the tire as close as possible to the edge of the rim, in order to force the bead out of its groove. One effective way to do so is to lay the tire and wheel on its side under your vehicle’s bumper, then position a Hi-Lift or bottle jack with the base plate on the tire and the lifting tongue or post under the bumper. Crank up the jack and the base plate will push the bead out of its groove. You generally only need to do this in one spot as the bead will easily pop out of the rest of the groove when stood on. Always break the bead on the outside of the wheel first; the groove on the inside has a ramp that makes it more difficult. 

Screen Shot 2018-02-05 at 9.43.19 PM.png

An elegant enhancement to the Hi-Lift technique is the Extreme Outback Beadbuster, which attaches to the jack’s base plate and incorporates a curved spade to precisely bear against the tire close to the rim, reducing stress on the sidewall. The opposite, cruder end of this spectrum is to lay the tire on the ground and simply drive over one edge of it with the help of a spotter. Effective, but a bit hard on the tire.

The Beadbuster makes beadbreaking with a Hi-Lift jack easier on the tire.

The Beadbuster makes beadbreaking with a Hi-Lift jack easier on the tire.

By far the quickest—and most stylish—way to break a bead is with the Australian-made Tyrepliers. This cunning tool, which adjusts to fit wheels up to 19 inches in diameter, frees the bead using good old Archimedean leverage. It’s nearly foolproof, and so universally respected that it carries a NATO stocking number. I’ve lost count of the onlookers and students I’ve amazed by popping the bead on a tire in about ten seconds flat. You stand on the tire and use one foot to push the fixed hook of the tool under one edge of the rim, then work the lever hook under the opposite side with the paired handles. Push down on the lever handle and voilá. It’s not only fast, you’re bearing only on the actual bead, so damaging the sidewall is virtually impossible.

First lever both hooks of the Tyreplier under the rim.

First lever both hooks of the Tyreplier under the rim.

Then push down on the outside lever to force the bead out of its groove.

Then push down on the outside lever to force the bead out of its groove.

Once the first bit of bead pops free of the groove, it’s generally possible to stomp the rest of it out around the circumference of the rim. If that doesn’t work, reposition the jack or Tyreplier.

Once the outside bead is free, turn the tire over and do the same to the inside bead. The tire will now be loose in the well of the rim, but you still will not have access to the inside of the carcass. For that you’ll need a pair of automotive tire irons, which look like and are just butched-up bicycle tire irons about two feet long, and work exactly the same way. (Extreme Outback's Deluxe model is the best I've used.) Start near the valve stem, insert one iron and lever the tire over the wheel edge. Insert the next one near it and lever that section of the tire over. Leave the first iron in place as you proceed around the tire until it pops free. With one side of the tire off the rim, you’ll have adequate access for most repairs; if not, you can use a tire iron and a dead-blow hammer to take the tire completely off the wheel. But getting the second bead over the edge is significantly more difficult.

Using tire levers to pull the bead over the rim.

Using tire levers to pull the bead over the rim.

If the sidewall split is short, you can simply patch it from the inside; again think glorified bicycle repair. The patches in the Extreme Outback kit cover a range from small to terrifyingly huge. If the split is severe, you’ll want to stitch it to hold the edges together and reinforce the patch—yes, more or less like a surgeon would do with a bad cut. I use a cordless drill, or an awl with a cutting edge, to make a line of small holes on either side of the split, an inch or so apart and a quarter inch from the split, then stitch it together tightly with whatever is handy. Small-diameter wire works best; heavy fishing line works too but is difficult to knot. (I’ve heard of people using dental floss, which might work if it were tripled or quadrupled.) With the slice secured, you can roughen the area behind it, spread cement on both tire and patch, wait until dry, then apply (obviously your patch needs to cover the stitch holes). This is another repair to be considered only in a fix-it-or-walk-home situation, but I know of stitched tires surviving dozens of rough miles. Incidentally, if you have a tire off the rim and you’ve done any plug repairs, note that now is a good time to trim the plug and install a patch behind it for ultimate security. 

Now you have to put everything back together. Starting this time opposite the valve, use the tire irons to pry the bead or beads over the rim and back into the well of the wheel, so you have a loose tire completely inside the rims. Remember the fancy machine the tire tech used to blast air into the tire and seat the beads? Again, we’re going to improvise. 

There’s a long-standing myth that you need a very large volume of air (or hold-my-beer pyrotechnics with starting fluid; see below), to reseat beads. But I’ve done it with very small compressors and proper technique—as long as the wheel is not too wide for the tire. If you run showpiece alloy wheels ten or twelve inches (or more) in width, so your tires’ sidewalls barely protrude past them, you might have a devil of a time reseating beads in the field—and you’ll also stand a much greater chance of damaging a wheel rim on the trail, since there’s no protection offered by the sidewall. The steel wheels on our Land Rover 110 and FJ40 Land Cruiser are 6.5  inches wide, and I can easily reseat beads on 255/85/R16 BFG tires (higher-profile tires help as well, with their more flexible sidewalls).

I mentioned that I’d reseated beads with very small compressors, but the larger volume of air you have, the easier and quicker the process will be (see sidebar on compressors). A CO2 tank will work very well, but be aware that CO2 can leak out of tires over time.

Here’s how it’s accomplished. Stand the tire and wheel upright, and center the tire as evenly as possible in the wheel with your chalk marks aligned. If tire and wheel are well-matched the tire’s beads will naturally bear against the inside of the grooves and form a partial seal on their own. Use water, with some detergent in it if you have it, to thoroughly soak the perimeter of each bead—this functions more as a lubricant than a seal. In a pinch any liquid is better than nothing—my nephew reports that Keystone Light beer works well, which is as far as I’m concerned the best possible use for Keystone Light.

Screen Shot 2018-02-06 at 11.49.51 AM.png

Your valve core is still out, right? Apply the air chuck to the valve and start inflating. If the tire is not centered properly you’ll see a lot of bubbles in one spot; stop and reposition. If the seal is good you’ll see the tire’s walls expand slowly until, with a distinctly alarming metallic PING, they will seat in turn, usually the inside one first because of the ramp. Release the chuck—air will rush out but the beads will stay put. Re-insert the valve core, inflate, and you’re finished.

Some bush mechanics suggest running a ratchet strap around the circumference of the tire and tightening it prior to setting the beads, the idea being that it will push the beads outward and making sealing easier. I’ve tried it with and without and never noticed a difference, even with a big strap—and to me the strap just adds one potentially dangerous bit to fly off if something goes wrong. The other seating technique is the infamous starting-fluid routine, which involves spraying starting fluid or another flammable aerosol around the bead of the tire laying on the ground, then tossing in a match to create a minor explosion that blows the beads onto their grooves in a split second. When this works it is a crowd-pleasing spectacle, but search YouTube for videos and you’ll find plenty of crowd-pleasing, spectacular failures as well. I prefer the more civilized approach.

There is another situation in which you might find it necessary to reseat a bead. Occasionally on very rough trails a rut or rock will catch the side of a tire with enough force to knock a bead loose and produce a startling whoosh as the tire deflates. This seems somewhat more likely to occur if you have aired down to enhance traction (or if you’ve been indulging in a bit of Baja 500 hooning). Frequently only one bead—usually the outside one—will be pushed off. While it is sometimes possible to reseat the bead with the wheel still on the truck, you might find it necessary to remove the wheel and actually unseat the opposite bead to get the tire to sit properly for reseating with an air compressor.

Once you’ve mastered the art of demounting tires and reseating beads in the field, dealing with simple punctures will seem like child’s play. That day in Nevada? If memory serves, we collected four more punctures before the day was out, and each one was repaired in a couple of minutes. We never even considered putting on the spare tire. That would have been way too much work.

Just part of the contents of the  Extreme Outback  Ultimate Puncture Repair Kit (about $100).

Just part of the contents of the Extreme Outback Ultimate Puncture Repair Kit (about $100).

 . . . and the also-excellent  ARB  kit, well-organized in a blow-molded case ($42).

 . . . and the also-excellent ARB kit, well-organized in a blow-molded case ($42).

Hammers . . .

Park Tool hammer.jpg

Lately I’ve been trying to expand my dedicated set of bicycle tools, largely the iconic blue-handled items from Park, which I described last time as the Snap-on on of bike tool makers. Honestly, besides the specialty bits—bottom bracket tools, brake compressors, head-tube reamers, and the like—there really is no particular “bikeness” about Park’s hex keys, wrenches, pliers, and screwdrivers. But they’re inarguably of high quality, fairly priced, and, well, the pegboard just looks sharp with color-coordinated tools, and it makes me feel like I’m a better bicycle mechanic than I really am, and perhaps if you feel like a better mechanic you’ll actually be one.

Or whatever rationalization you like . . .

In any case, recently I decided it would be nice to have a dedicated hammer for bicycle work, for when certain things just need a tap or two either to get where they’re supposed to be or to be removed (the cottered cranks on Roseann’s vintage Raleigh come to mind). So I ordered a Park hammer with one hard face and one (replaceable) plastic face.

I was expecting a 3/4-scale tool suitable for not endangering expensive Campagnolo parts or brittle carbon fiber; instead I got a full-sized brute of a thing that weighs 2.1 pounds. 

Hmm . . . that got me thinking, and I pulled out the One Case Tool Kit (full-size version). In it I currently have two hammers—a sledge for rough work and a Craftsman plastic-faced product with one soft and one harder face. The sledge weighs 2.4 pounds, the plastic hammer just under a pound. Honestly, the plastic hammer has proved too light. Even as something designed to be gentle on parts it lacks sufficient mass and kinetic energy to be effective. Comparing the new Park hammer, it is not that much lighter than the sledge for rough beating, yet usefully twice the weight of the Craftsman plastic hammer. And by replacing both previous hammers I actually save almost a pound and a half. 

So, er, now I need to buy another bicycle hammer . . .  

The most perfect tool on earth

Jesus clip tool.jpg

Okay, that might be a bit of an overstatement. But every now and then you come across a tool that does exactly one thing, but does it so perfectly that you wonder how you got along without it.

In this case, the one thing to which I'm referring involves a fastener found, among many other places, on Land Cruiser carburetors. It's a near-microscopic springy bit known generally as a hair-pin clip, or colloquially as a Jesus clip (is it sacrilegious to use a capital there?)—either because some of them are shaped like the letter J, or because of the epithet used when one flies out of your grasp. On carburetors they're used to secure linkage rods by popping into a groove at the end of the rod. Removing and replacing them has always been a dicey proposition with needle-nose pliers or, slightly better, hemostats. Dicey because if one of these things pops out of whatever you're using to hold it, it's gone.

Jesus clips.jpg

A few months ago, our master Toyota mechanic friend Bill Lee was visiting, and while he was here he addressed some issues on the FJ40's carb. When he started disassembling the linkage he pulled this out of his kit: a simple plunger-activated rod with a tiny hook in the end of a tiny tube.

Jesus clip tool tip.jpg

The hook grabbed each Jesus clip and popped it off (and back on again) with effortless security. A groove in the end of the tube ensured the clip stayed straight, even when pushing it back into place.

OMG. I had to have one.

Except it turns out the company that made them, Lisle, discontinued part #46500. Little demand for fiendishly clever carburetor tools these days, I guess. I haunted eBay for weeks but failed to find a used one—until Bill visited again, and handed me one a mechanic friend, Jeff Bell, had given him. I'm going to be rebuilding my carburetor every six months just to employ this thing. Brilliant.

Jesus clip tool function.jpg

More on the OCTKL

Snap-on and JH Williams screwdrivers

Snap-on and JH Williams screwdrivers

The One-Case Tool Kit Lite (OCTKL) has been gathering dust the last few months. Trail dust, that is. It’s seen enough use that I thought a report was warranted, although I’m not sure the kit has assumed its final form. (See here and here for the initial articles.)

In many instances the contents simply migrated from the OCTKL’s 60-pound progenitor. But I wanted to try a few different things, and I explored a couple of new-to-me manufacturers. Here’s what I’ve been doing.

I go back and forth on screwdrivers. Sometimes I think Ace Hardware stuff is just fine. A 12-piece set there will run you $29. Snap-on charges $187 for seven pieces—four standard, three Phillips. That’s $26 each. Yes, they’re U.S.-made. Yes, the Snap-on items incorporate hex fittings so you can apply a wrench for extra torque, so they’re obviously durable. But seriously? I’m perfectly happy to drop $180 on a half-inch Snap-on ratchet, which might be the critical tool for a major repair. Less convinced I need the same commitment for screwdrivers. 

Out of curiosity I started browsing Snap-on’s “Industrial Brands,” which comprise various subsidiaries that make tools for Snap-on in various countries of origin. One intriguing brand was JH Williams, which in at least some cases appears to manufacture tools equivalent to Snap-on tools of earlier generations. On Amazon I found a basic five-piece Williams screwdriver set, #100P-5MD—three slotted drivers and two Phillips—for $38.23. Also available was a comprehensive 19-piece assortment for $115. The Williams drivers appeared to be exact clones of the Snap-on screwdrivers I, er, actually bought about 15 years ago—right down to the hex fitting. The handles are identical—a rather slick black composite, which at first seems contra-indicated. However, they are shaped well for grip, and the finish makes them easy to clean up in the field—an important benefit in my book. I bought the basic kit as an experiment, and so far they’re performing perfectly. 

I was surprised to see the Snap-on Industrial Brands website lists the origin of the Williams screwdrivers as the U.S. I figured they had been made offshore. As best I can determine, these are indeed identical to the previous generation Snap-on screwdrivers. Hmm . . . Seems like a bargain to me.

So . . . what about other Snap-on Industrial Brands? One that’s been around forever is Blue Point, which I seem to recall originally was used to label Snap-on’s power tools. Now Blue Point covers a wide range of products, including hand tools. I decided to try a set of 3/8ths inch, 12-point deep metric sockets, which seem to be impeccably made, and grip fasteners with every indication of the tight tolerance that is a hallmark of high-quality sockets. The Blue Point sockets are made in Taiwan, which has become the source for high-quality tools from several other companies such as Facom.

Blue Point deep sockets.jpg

I wanted to keep the OCTKL compact and as light as possible, but I didn't want to simply dump my sockets into one of the pockets of the Blue Ridge Overland bag. So I ordered a set of flexible urethane socket rails from Off Road Trail Tools. They come in 1/4, 3/8, and 1/2-inch sizes, weigh next to nothing, and can be cut to length if you don’t need all 14 posts. 

The ORTT urethane socket rails are flexible and trimable

The ORTT urethane socket rails are flexible and trimable

On to . . . needle-nosed pliers? Yes. I find myself using these frequently, yet I’d never found a reasonably priced pair that I really liked—until I tried the ones pictured, from Park Tools, who are more or less considered the Snap-on of bicycle tool makers. Their NP-6 pliers have five different gripping, cutting, and crimping sections, fat and extremely comfortable and secure grips, and a gentle spring that keeps them open unless squeezed, meaning you only have to manipulate them in one direction. Well worth $25.

Park Tools pliers.jpg

More on the OCTKL contents shortly.

Snap-on (including Blue Point) is here.

Snap-on Industrial Brands is here.

Off Road Trail Tools is here.

Park Tools is here.

OCTK Lite part 2


Buying good hand tools isn’t as easy as it used to be. Not that many years ago, if you wanted top-quality stuff you bought American-made brands—Snap-on or Mac if you had the money, Sears Craftsman if not. Done. (If you were British you bought Britool; if French, Facom; if Italian, USAG: and if Australian; Sidchrome.)

Now it’s not so simple. Not only is there a bewildering array of brands available, manufacturing is now global. No longer does brand loyalty or even knowing the country of origin necessarily guarantee quality. Most Craftsman tools are currently manufactured in Taiwan, and it isn’t even Sears any more. Tool behemoth Stanley/Black&Decker now owns the Craftsman line, and Mac and Proto as well, plus the (formerly) British Britool, the (formerly) French Facom, the (formerly) Italian USAG, and the (formerly) Australian Sidchrome. Sheesh.

You can’t just go by materials and manufacturing process. Socket sets from $19.95 Harbor Freight specials on up to apparently identical boutique assortments costing ten times as much advertise chrome vanadium steel and forged construction. There’s simply no way for a consumer to determine the actual composition or quality of the alloy.

You might think you could at least trust the guarantee, but I’m not so sure. A chain auto-parts-store Torx bit I bought out of immediate necessity recently was made in China and has a lifetime replacement warranty. But is that because the tool is of such high quality that the company has confidence it will never fail, or because it is so cheap to manufacture that the company can afford to replace bits for the few people who actually stress and break them? I strongly suspect the latter. Sure, you’ll get a new tool free, but if it breaks when you’re attempting a repair 20 miles down a dirt track and 150 miles from the nearest outlet, that’s not of much immediate value.

You can of course still guarantee superior quality by sticking to the ultra-premium makers such as Snap-on or Mac. Otherwise, I’ve gone back to a rather old-fashioned approach to estimating quality in a tool: I handle it and inspect it. That might seem flippant, but really, your eyes and hands can tell you a lot about a tool—particularly in the finish. As an example I give you the Britool SAE/metric ratchet and socket set I bought years ago. It was actually manufactured in Taiwan, but the quality was excellent. The finish was a perfectly even satin, absolutely consistent from socket to ratchet to extension. The roll markings on the sockets were crisp, as was the knurling on the extensions. The ratchet had a 72-tooth head, this requiring less swing to engage when working in tight quarters than one with fewer teeth. The extensions had hex fitting so you could apply a wrench if for some reason you couldn’t get the ratchet on it.

Britool 748267.jpg

A superb set of tools—and if I’d known then what I know now I would have bought ten of them, because soon Britool changed all their sets to blue-boxed “Expert” stuff that was a steep plunge off a cliff in quality. Thick, uneven chrome and much simplified accessories, clearly now built to a price rather than a standard. Can one help suspecting the same cost-control measures were applied where it isn’t as obvious?

On the other hand, consider the 1/4-inch ratchet I picked up at a Napa Auto Parts the other day. It’s the chain’s own brand, Carlyle, aimed, they say, at professional mechanics. Manufactured in Taiwan, each piece carries a lifetime guarantee (although, importantly, I understand you must show the original receipt, unlike the similar guarantee offered by Snap-on, Mac, and even Craftsman).

Carlyle 2.jpg

Ignoring for the moment the de rigueur Snap-on-esque handle shape also ripped off by a zillion other brands, consider that the Carlyle ratchet retails for 18 dollars, while the U.S.-made Snap-on item above it goes for a nickel less than a hundred. To be accurate, note that the Snap-on ratchet has a quick-release button; the equivalent Carlyle ratchet (which the store did not have on hand) lists for $25. So let’s call the Carlyle one quarter the price.

In terms of finish, I could see absolutely no difference between the two. Both are fully polished, and the chrome is even and betrays no machining marks. The head on the Carlyle is actually a bit lower-profile than the Snap-on item, but that might be due to the lack of a quick-release mechanism. Each is rebuildable; Carlyle lists the kit number right on the ratchet.

Carlyle 1.jpg

So far the decision of which to choose seems easy. However, differences become obvious with manipulation. First, the Carlyle ratchet has a 60-tooth head—not bad, but the Snap-on has 72, again, less swing in those tight spots. And Snap-on’s “Dual-80” head technology is known for its immense strength. Nod to Snap-on. Next, the reversing lever, which on the Carlyle is flat, sharp-edged, and rather stiff to operate, while the Snap-on’s rounded lever flicks back and forth effortlessly. Also, the Carlyle’s lever rocks a bit when moved, indicating looser tolerances, while the Snap-on lever simply pivots. Another nod to Snap-on. 

With the faceplate off each tool, the differences become more stark. Note, first, the significantly larger diameter of the anvil gear on the Snap-on (bottom here); then the dual drive pawls versus the single Carlyle piece. I’m not about to test a $100 tool to failure, but I’d be happy to bet someone more than that that the Snap-on would take far more torque before it failed. Even the lubrication was a contrast: The Carlyle seemed to have been anointed with a few drops of oil; the Snap-on was liberally infused with a light grease.

Carlyle 3.jpg

So there is little doubt the Snap-on ratchet is functionally superior to the Carlyle, and certainly far more durable. The question is, is it four times better? I think the answer to that depends on your own situation and attitude. First, let’s be blunt: At least $25 of the extra price of the Snap-on is in that name and the status of those high-profile trucks. (I dream of winning a contest: Five minutes inside the truck; anything I can throw out in that time I get to keep.) But another $25 probably represents the extra cost of producing the tool in the U.S. Still, we’re left with a disparity. The Carlyle definitely offers a lot for the price.

If I were a professional mechanic there’d be no hesitation, but I’m not, and I’m also not rich, so it’s more complicated. However, I still trust my Prime Directive for a field tool kit:

If you’ve brought out the tool kit far from home, something has already gone wrong. Why risk compounding the problem by using cheap tools to try to fix it?

My approach to adhering to this axiom on a less-then-unlimited budget is two-fold, as I’ve written before:

First: Spend the most on the most critical tools, the ones you’ll need for the most critical repairs, then economize on the rest. Top of the list is your ratchet and socket set.

Second: eBay. I’ve haunted online auctions and snagged excellent deals, especially on sets missing one or two items, which I then shop for individually. Your local Craigslist can also be a good source. Since premium tools are the most durable, buying used is generally safe unless they have been seriously abused.

Thus, the first items I chose for the One-Case Tool Kit Lite were the 1/4-inch Snap-on ratchet dissected here, and its big brother, a flex-head Snap-on FRLF80 3/8ths ratchet. I have sockets and extensions from the same company for each; however, I’m investigating some alternatives as less-expensive options.

Snap-on 1.jpg

Two kits that will (almost) breakdown-proof your vehicle

IMG_4710 copy

Our modern four-wheel-drive vehicles, virtually without exception, are far, far better machines than those we traveled with 30 or 40 years ago, the rose-tinted recollections of some of us nothwithstanding. (See here for a direct comparison.) Yes, they are vastly more complex: The average car today has between 25 and 50 electronic control units or ECUs (the Bentley Bentayga has 90)—some linked, some independent—controlling everything from shock absorber adjustment to accident-avoidance braking. But those complex systems have brought us more power, better fuel economy, a huge improvement in safety, and cleaner air—all at once. 

Despite this complexity, vehicles in general are more reliable than ever. Solid-state ECUs are incredibly stable and durable; precision design and manufacturing processes and advances in metallurgy have made engines and other drivetrain components much longer-lasting. A car with 100,000 miles on the odometer used to be noteworthy; these days, beater pizza-delivery Civics with 200,000-plus under their faded paint are as common as Domino’s outlets. When something does go wrong, the car will quite likely be able to tell the mechanic what is is. How long will it be before a car can sense a part about to fail, then automatically log onto Amazon and have the piece waiting at the shop when the self-drive function reroutes you there?

These advances have made overland travel easier and safer as well, even if—to be fair to those rose-tinted recollections—if something does go wrong in the bush you won’t be regapping the points with a matchbook cover if the dwell shifts, or disassembling the carburetor and popping in a rebuild kit if a gasket goes bad. (But since we no longer have points or carburetors . . .)

One thing has not changed, and that is the two types of problems behind the vast majority of issues in the backcountry that bring a vehicle to a halt: tire punctures and dead batteries. (Number three—at least on the road—according to the AAA? Locking the keys in the car.) 

While tires and batteries have also been improved significantly in the last few decades, both are wear items and are subject to the whims of chance, whether it be a jagged root holing a tire or any number of things draining a battery. 

What this means, however, is that with just two kits in your vehicle you can fix the vast majority of things that are likely to go wrong in the backcountry.

  • A backup for the starting battery
  • An air compressor and tire repair kit

Let’s, er, start with the battery. A lot of people now have dual-battery systems in their overlanding vehicles, so the auxiliary can be used to power fridges, etc. without draining the starting battery. Most of these systems have a switch that will tie in the auxiliary to the starting circuit when needed, thus solving the problem of a dead main battery in a few seconds. If there is no switch, the auxiliary can be physically swapped with the main battery. Since the chances of two batteries dying simultaneously—at least when installed with a proper isolating system—are scant, you’re more or less immune to battery woes.

A dual-battery system with an automatic isolator, such as this excellent National Luna, will virtually guarantee starting power for your engine

A dual-battery system with an automatic isolator, such as this excellent National Luna, will virtually guarantee starting power for your engine

If you have only a single battery for all your systems, I have just one word for you: Microstart. These have been around for several years now and I’ve been preaching their gospel to the point of fanaticism, but I still run into people who have never heard of the product and are blown away when I jump-start their dead 3/4-ton pickup with a battery the size of a VHS tape. I have used and abused a half-dozen of them (we keep one in every vehicle) and they’ve performed perfectly. Early on in their history, master fabricator Tim Scully and I wondered if they could be used for field welding. We duly hooked up three in series and produced several excellent beads, after which the trio continued to work perfectly for their intended use. When I called Scott Schafer at Antigravity Batteries he expressed mingled astonishment and horror at what we had accomplished. (Current Microstarts include an overload device that prevents such shenanigans. Blame Tim and me.) In any case, a Microstart will that ensure a dead starting battery will not leave you stranded. Buy the XP-1 if you have a gasoline-engined mid-size SUV, or the XP-10 if you have a big diesel-powered truck, and top it up (on either AC or DC) every four or five months.


The only real alternative to safeguard a single battery is a low-voltage cutout, which will shut off current flowing from the battery if it senses voltage dropping to levels that would make the vehicle difficult to start. While this might be fine as a backup, I've found that a lot of people who install them are overburdening their battery to begin with, for example by running a fridge while still relying on the battery to turn a high-amperage starter. Better to go with a dual-battery system if you have that much draw.

That leaves tires. As with batteries, they’re a lot tougher and longer-wearing than in years past, but still vulnerable to damage, especially when driven on rough roads and trails. Yet I’m surprised at how many overlanders confine their backup tire kit to a single spare and perhaps a can of Fix-a-Flat. We can do better, and all it takes is a compressor and a proper tire-repair kit.

The repair kit is easy. At its most basic you want a plug kit, which will handle the majority of punctures within the tread area, usually without even needed to remove the wheel and tire from the car. But skip the Pep Boys versions and get a good one. This isn’t just tool snobbery talking: plugging a tire involves shoving pretty hard on the reaming tool and the plug-inserting tool. You do not want a cheap plastic-handled tool breaking during the procedure. ARB makes an excellent plug kit with everything you need for most simple punctures. If you want to step up from that and be prepared to handle virtually any tire problem short of a carcass-shredding blowout (including sidewall splits and broken valve stems), get the Exptreme Outback Ultimate Puncture Repair Kit. It’s expensive at $99, but you’ll never have to buy anything else to repair tires as long as you live.

The ARB Speedy Seal kit includes a proper metal-handled reamer and plug inserter.

The ARB Speedy Seal kit includes a proper metal-handled reamer and plug inserter.

Once the tire is repaired you’ll need to re-inflate it. While there are air compressors available from $19.95 on up, skip the cheap ones. They fail with miserable frequency, and even when working are so slow that you could hike out, buy a better unit, and be back before your tire is properly inflated. At a bare minimum get one of the ubiquitous Super Flow MV50 units, which are available from around $60. The MV50s have their issues but in general are reliable and reasonably fast, and if you’re a tinkerer there are dozens of web articles detailing worthwhile hacks for the product. 

Personally I prefer buying a better compressor to start with, both for repairing tires and for the much more frequently needed function of airing all four tires back up after airing them down for trail driving. To step up in quality look at the Viair units and anything from Extreme Outback. My current favorite compressor is the blindingly fast ARB Twin, expensive but worth every penny. Use the Twin to air up and you’ll be finished with your own vehicle and a friend’s before someone with an MV50 has done two tires.

The ARB Twin is available either as the portable kit shown here,which includes an air tank for operating air tools, or as a stand-alone unit for hard mounting in the vehicle.

The ARB Twin is available either as the portable kit shown here,which includes an air tank for operating air tools, or as a stand-alone unit for hard mounting in the vehicle.

Part of what defines overlanding is self-sufficiency. Making sure battery and tire troubles can’t bring you to a halt will go a long way toward guaranteeing that self-sufficiency—and if you travel far off the beaten track might just save you a sat-phone call and a very expensive recovery.